реферат, рефераты скачать
 

Нахождение всех комбинаций расстановки n ферзей на доске n X n


Нахождение всех комбинаций расстановки n ферзей на доске n X n

Государственный комитет Российской Федерации

по высшему и среднеспециальному образованию

Красноярский Государственный Технический Университет

Курсовая работа

по курсу

Математическая логика и теория алгоритмов

Выполнил студент гр. ВТ27-4

Попов А.В.

Проверила:

Пестунова Т.М.

1998

Содержание.

1. Постановка задачи (стр.3).

2. Построение модели (стр.3).

3. Описание алгоритма (стр.4).

4. Доказательство правильности алгоритма (стр.7).

5. Блок-схема алгоритма (стр.8).

6. Описание переменных и программа (стр.9).

7. Расчёт вычислительной сложности (стр.11).

8. Тестирование (стр.11).

9. Список литературы (стр.12).

Постановка задачи.

Перечислить все способы расстановки n ферзей на шахматной доске n на n,

при которых они не бьют друг друга.

Построение модели.

Очевидно, на каждой из n горизонталей должно стоять по ферзю. Будем

называть k-позицией (для k = 0, 1,...,n) произвольную расстановку k ферзей

на k нижних горизонталях (ферзи могут бить друг друга). Нарисуем "дерево

позиций": его корнем будет единственная 0-позиция, а из каждой k-позиции

выходит n стрелок вверх в (k+1)-позиции. Эти n позиций отличаются

положением ферзя на (k+1)-ой горизонтали. Будем считать, что расположение

их на рисунке соответствует положению этого ферзя: левее та позиция, в

которой ферзь расположен левее.

Дерево позиций для n = 2

Данное дерево представлено только для наглядности и простоты

представления для n=2.

Среди позиций этого дерева нам надо отобрать те n-позиции, в которых

ферзи не бьют друг друга. Программа будет "обходить дерево" и искать их.

Чтобы не делать лишней работы, заметим вот что: если в какой-то k-позиции

ферзи бьют друг друга, то ставить дальнейших ферзей смысла нет. Поэтому,

обнаружив это, мы будем прекращать построение дерева в этом направлении.

Точнее, назовем k-позицию допустимой, если после удаления верхнего

ферзя оставшиеся не бьют друг друга. Наша программа будет рассматривать

только допустимые позиции.

Описание алгоритма.

Разобьем задачу на две части: (1) обход произвольного дерева и (2)

реализацию дерева допустимых позиций.

Сформулируем задачу обхода произвольного дерева. Будем считать, что у

нас имеется Робот, который в каждый момент находится в одной из вершин

дерева. Он умеет выполнять команды:

вверх_налево (идти по самой левой из выходящих вверх стрелок)

вправо (перейти в соседнюю справа вершину)

вниз (спуститься вниз на один уровень)

вверх_налево

вправо

вниз

и проверки, соответствующие возможности выполнить каждую из команд,

называемые "есть_сверху", "есть_справа", "есть_снизу" (последняя истинна

всюду, кроме корня). Обратите внимание, что команда "вправо" позволяет

перейти лишь к "родному брату", но не к "двоюродному".

Будем считать, что у Робота есть команда "обработать" и что его задача

- обработать все листья (вершины, из которых нет стрелок вверх, то есть где

условие "есть_сверху" ложно). Для нашей шахматной задачи команде

обработать будет соответствовать проверка и печать позиции ферзей.

Доказательство правильности приводимой далее программы использует такие

определения. Пусть фиксировано положение Робота в одной из вершин дерева.

Тогда все листья дерева разбиваются на три категории: над Роботом, левее

Робота и правее Робота. (Путь из корня в лист может проходить через вершину

с Роботом, сворачивать влево, не доходя до нее и сворачивать вправо, не

доходя до нее.) Через (ОЛ) обозначим условие "обработаны все листья левее

Робота", а через (ОЛН) - условие "обработаны все листья левее и над

Роботом".

Нам понадобится такая процедура:

procedure вверх_до_упора_и_обработать

{дано: (ОЛ), надо: (ОЛН)}

begin

{инвариант: ОЛ}

while есть_сверху do begin

вверх_налево

end

{ОЛ, Робот в листе}

обработать;

{ОЛН}

end;

Основной алгоритм:

дано: Робот в корне, листья не обработаны

надо: Робот в корне, листья обработаны

{ОЛ}

вверх_до_упора_и_обработать

{инвариант: ОЛН}

while есть_снизу do begin

if есть_справа then begin {ОЛН, есть справа}

вправо;

{ОЛ}

вверх_до_упора_и_обработать;

end else begin

{ОЛН, не есть_справа, есть_снизу}

вниз;

end;

end;

{ОЛН, Робот в корне => все листья обработаны}

Осталось воспользоваться следующими свойствами команд Робота (сверху

записаны условия, в которых выполняется команда, снизу - утверждения о

результате ее выполнения):

1) {ОЛ, не есть_сверху} обработать {ОЛН}

2) {ОЛ} вверх_налево {ОЛ}

3) {есть_справа, ОЛН} вправо {ОЛ}

4) {не есть_справа, ОЛН} вниз{ОЛН}

Теперь решим задачу об обходе дерева, если мы хотим, чтобы

обрабатывались все вершины (не только листья).

Решение. Пусть x - некоторая вершина. Тогда любая вершина y относится

к одной из четырех категорий. Рассмотрим путь из корня в y. Он может:

а) быть частью пути из корня в x (y ниже x);

б) свернуть налево с пути в x (y левее x);

в) пройти через x (y над x);

г) свернуть направо с пути в x (y правее x);

В частности, сама вершина x относится к категории в). Условия теперь

будут такими:

(ОНЛ) обработаны все вершины ниже и левее;

(ОНЛН) обработаны все вершины ниже, левее и над.

Вот как будет выглядеть программа:

procedure вверх_до_упора_и_обработать

{дано: (ОНЛ), надо: (ОНЛН)}

begin

{инвариант: ОНЛ}

while есть_сверху do begin

обработать

вверх_налево

end

{ОНЛ, Робот в листе}

обработать;

{ОНЛН}

end;

Основной алгоритм:

дано: Робот в корне, ничего не обработано

надо: Робот в корне, все вершины обработаны

{ОНЛ}

вверх_до_упора_и_обработать

{инвариант: ОНЛН}

while есть_снизу do begin

if есть_справа then begin {ОНЛН, есть справа}

вправо;

{ОНЛ}

вверх_до_упора_и_обработать;

end else begin

{ОЛН, не есть_справа, есть_снизу}

вниз;

end;

end;

{ОНЛН, Робот в корне => все вершины обработаны}

Приведенная только что программа обрабатывает вершину до того, как

обработан любой из ее потомков. Теперь изменим ее, чтобы каждая вершина, не

являющаяся листом, обрабатывалась дважды: один раз до, а другой раз после

всех своих потомков. Листья по-прежнему обрабатываются по разу:

Под "обработано ниже и левее" будем понимать "ниже обработано по разу,

слева обработано полностью (листья по разу, остальные по два)". Под

"обработано ниже, левее и над" будем понимать "ниже обработано по разу,

левее и над - полностью".

Программа будет такой:

procedure вверх_до_упора_и_обработать

{дано: (ОНЛ), надо: (ОНЛН)}

begin

{инвариант: ОНЛ}

while есть_сверху do begin

обработать

вверх_налево

end

{ОНЛ, Робот в листе}

обработать;

{ОНЛН}

end;

Основной алгоритм:

дано: Робот в корне, ничего не обработано

надо: Робот в корне, все вершины обработаны

{ОНЛ}

вверх_до_упора_и_обработать

{инвариант: ОНЛН}

while есть_снизу do begin

if есть_справа then begin {ОНЛН, есть справа}

вправо;

{ОНЛ}

вверх_до_упора_и_обработать;

end else begin

{ОЛН, не есть_справа, есть_снизу}

вниз;

обработать;

end;

end;

{ОНЛН, Робот в корне => все вершины обработаны полностью}

Доказательство правильности алгоритма.

Докажем, что приведенная программа завершает работу (на любом конечном

дереве).

Доказательство. Процедура вверх_налево завершает работу (высота Робота не

может увеличиваться бесконечно). Если программа работает бесконечно, то,

поскольку листья не обрабатываются повторно, начиная с некоторого момента

ни один лист не обрабатывается. А это возможно, только если Робот все

время спускается вниз. Противоречие.

Блок-схема алгоритма.

Описание переменных и программа.

Теперь реализуем операции с деревом позиций. Позицию будем

представлять с помощью переменной k: 0..n (число ферзей) и массива c:

array [1..n] of 1..n (c [i] - координаты ферзя на i-ой горизонтали; при i >

k значение c [i] роли не играет). Предполагается, что все позиции допустимы

(если убрать верхнего ферзя, остальные не бьют друг друга).

program queens;

const n = ...;

var k: 0..n;

c: array [1..n] of 1..n;

procedure begin_work; {начать работу}

begin

k := 0;

end;

function danger: boolean; {верхний ферзь под боем}

var b: boolean;

i: integer;

begin

if k верхний ферзь под боем ферзей с номерами < i}

while i <> k do begin

b := b or (c[i]=c[k]) {вертикаль}

or (abs(c[i]-c[k])=abs(i-k)); {диагональ}

i := i+ 1;

end;

danger := b;

end;

end;

function is_up: boolean {есть_сверху}

begin

is_up := (k < n) and not danger;

end;

function is_right: boolean {есть_справа}

begin

is_right := (k > 0) and (c[k] < n);

end;

{возможна ошибка: при k=0 не определено c[k]}

function is_down: boolean {есть_снизу}

begin

is_up := (k > 0);

end;

procedure up; {вверх_налево}

begin {k < n}

k := k + 1;

c [k] := 1;

end;

procedure right; {вправо}

begin {k > 0, c[k] < n}

c [k] := c [k] + 1;

end;

procedure down; {вниз}

begin {k > 0}

k := k - 1;

end;

procedure work; {обработать}

var i: integer;

begin

if (k = n) and not danger then begin

for i := 1 to n do begin

write (' ');

end;

writeln;

end;

end;

procedure UW; {вверх_до_упора_и_обработать}

begin

while is_up do begin

up;

end

work;

end;

begin

begin_work;

UW;

while is_down do begin

if is_right then begin

right;

UW;

end else begin

down;

end;

end;

end.

Расчёт вычислительной сложности.

Емкостная сложность:

В программе используется одномерный массив размерности n, поэтому объём

входа и объём выхода совпадают и равны n. Количество пременных равно

3(i,b,k) + 1(const n), т.е. объём промежуточных данных равен 4.

С(n)=n+4

Временная сложность:

Если рассматривать обработку каждого листа, без проверки на пути к

нему, то временная сложность T(n) = n0+n1+n2+n3+…+nn .

Но в случае, когда каждая вершина проверяется, временная сложность T(n) =

o(n0+n1+n2+n3+…+nn). И это тем вернее, чем больше n. Данный вывод получен

на основе приведённых ниже статистических данных:

|1 |2 |3 |4 |5 |6 |7 | |Общее кол-во листьев |2 |7 |40 |341 |3906 |55987

|960800 | |Кол-во вершин построенного дерева. |2 |3 |4 |17 |54 |153 |552 |

|Время построения(сек) |

Т.е. количество расстановок равно 2. Ниже приведена таблица зависимости

от n количества решений (R).

n = |1 |2 |3 |4 |5 |6 |7 |8 |9 |10 |11 |12 |13 | |

|R= |1 |0 |0 |2 |10 |4 |40 |92 |352 |724 |2680 |14200 |73712|

Cписок литературы.

1) Кузнецов О.П. Адельсон-Вельский Г.М. Дискретная математика для

инженера. – М.: Энергоатомиздат, 1988.

2) Евстигнеев В.А. Применение теории графов в программировании. –

М.:Наука, 1984.

3) Основной алгоритм находился на BBS “Master of Univercity” в файле

shen.rar в файловой области “Bardak” (тел. 43-27-03; время работы 21.00

– 7.00; FTN адрес – 2:5090/58).

-----------------------

[pic]

[pic]


ИНТЕРЕСНОЕ



© 2009 Все права защищены.