реферат, рефераты скачать
 

Вирусы. Происхождение и распростронение. Систематизация. Грипп


Вирусы. Происхождение и распростронение. Систематизация. Грипп

Ведение.

Существует большая группа живых существ, не имеющих клеточного

строения. Эти существа носят названия вирусов (лат "вирус" - яд) и

представляют неклеточные формы жизни. Вирусы нельзя отнести ни к животным,

ни к растениям. Они исключительно малы, поэтому могут быть изучены только с

помощью электронного микроскопа.

Вирусы способны жить и развиваться только в клетках других организмов.

Вне клеток живых организмов вирусы жить не могут, и многие из них во

внешней среде имеют форму кристаллов. Поселяясь внутри клеток животных и

растений, вирусы вызывают много опасных заболеваний. К числу вирусных

заболеваний человека относятся, например, корь, грипп, полиомиелит, оспа.

Среди вирусных болезней растений известна мозаичная болезнь табака, гороха

и других культур; У больных растений вирусы разрушают хлоропласты, и

пораженные участки становятся бесцветными.

Вирусы открыл русский ученый Д. И. Ивановский в 1892 г.

Каждая вирусная частица состоит из небольшого количества ДНК или РНК, т. е.

генетического материла, заключенного в белковую оболочку. Эта оболочка

играет защитную роль.

Известны также вирусы, поселяющиеся в клетках бактерий. Их называют

бактериофагами или фагами (греч "фагос" - пожирающий). Бактериофаги

полностью разрушают бактериальные клетки и потому могут быть использованы

для лечения бактериальных заболеваний, например дизентерии, брюшного тифа,

холеры.

Строений вирусов дает основание считать их неклеточными существами.

Природа и происхождение вирусов.

Современные представления о вирусах складывались постепенно. После

открытия вирусов Д. И. Ивановским (1892) их считали просто очень мелкими

микроорганизмами, не способными расти на искусственных питательных средах.

Вскоре после открытия вируса табачной мозаики была доказана вирусная

природа ящура [Fler F, Frosch P. 1898], а еще через несколько лет были

открыты бактериофаги [d'Herrelle F., 1917]. Таким образом, были открыты три

основные группы вирусов, поражающие растения, животных и бактерии.

Однако в течение длительного времени эти самостоятельные разделы

вирусологии развивались изолированно, а наиболее сложные вирусы —

бактериофаги — долгое время считались не живой материей, а чем-то вроде

ферментов. Тем не менее, уже к концу 20-х — началу 30-х годов стало ясно,

что вирусы являются живой материей, и примерно тогда же за ними закрепились

наименования фильтрующихся вирусов, или ультравирусов. Это нашло отражение

в одной из первых монографий о них [Hauduray, 1936]. Позже приставки

отпали, и укоренилось ныне применяемое обозначение — вирусы, под которым

объединили вирусы растений, животных и бактериофаги— бактериальные вирусы.

В конце 30-х — начале 40-х годов изучение вирусов продвинулось

настолько, что сомнения в живой их природе отпали, и было сформулировано

положение о вирусах как организмах [Burnet F., 1945]. Основанием для

признания вирусов организмами явились полученные при их изучении факты,

свидетельствовавшие, что вирусы, как и другие организмы (животные,

растения, простейшие, грибы, бактерии), способны размножаться, обладают

наследственностью и изменчивостью, приспособляемостью к меняющимся

условиям среды их обитания и, наконец, подверженностью биологической

эволюции, обеспечиваемой естественным или искусственным отбором.

Концепция о вирусах как организмах достигла своего расцвета к началу 60-х

годов, когда было введено понятие «вирион» как вирусного индивидуума [Lwoff

A. et al., 1962]. Однако в эти же годы, ознаменовавшиеся первыми успехами

молекулярной биологии вирусов, начался и закат концепции о вирусах как

организмах, и эти противоречивые процессы (триумф и закат) нашли свое

отражение на 1-м Международном симпозиуме [Cold Spring Harbor, 1962]. Уже

тогда одновременно с введением понятия «вирион» были показаны, с одной

стороны, отличия их строения от строения клеток и даже был введен термин

«архитектура» вирионов [Caspar, Klug А., 1962]. С другой стороны, были

обобщены факты, указывавшие на совершенно отличный от клеток тип

размножения, который некоторое время называли дизъюнктивной репродукцией,

подчеркивая разобщенность — временную и территориальную — синтеза

генетического материала (РНК, ДНК) и белков вирусов. В докладе на

упоминавшемся симпозиуме [Lwoff A. et al., 1962] был также сформулирован

основной критерий отличия вирусов от других организмов: генетический

материал вирусов является одним из двух типов нуклеиновых кислот (РНК или

ДНК), в то время как организмы имеют оба типа нуклеиновых кислот.

Этот критерий в дальнейшем оказался неабсолютным, так как, во-первых,

ДНК-содержащие вирусы в ходе репродукции синтезируют информационные (или

матричные) РНК, во-вторых, РНК-содержащие ретровирусы в ходе репродукции

синтезируют ДНК, а кроме того, крупные РНК-содержащие вирусы (оспы,

герпеса) могут содержать небольшие количества РНК также и в вирионах, а

небольшие количества ДНК (все же, вероятно, клеточной) обнаружены в

вирионах вирусов гриппа. Основным и абсолютным критерием, отличающим вирусы

от всех других форм жизни, является отсутствие у них собственных систем

синтеза белка (рибосомных систем).

Накопившиеся к настоящему времени данные позволяют также прийти к

выводу, что вирусы не являются организмами, пусть даже мельчайшими, так как

любые, даже минимальные организмы типа микоплазм, риккетсий или хламидий

имеют собственные белоксинтезирующие системы.

Способ размножения вирусов также отличается от деления, почкования,

спорообразования или полового процесса, которые имеют место у одноклеточных

организмов, у клеток многоклеточных организмов и у последних в целом.

Репродукция, пли репликация, как обычно обозначают размножение вирусов,

происходит дизъюнктивно (последний термин ныне чаще подразумевается, чем

употребляется). Формирование вирионов происходит либо путем само сборки

(упаковка вирусной нуклеиновой кислоты в белковый капсид и образование

таким путем нуклеокапсида), либо с участием клетки (некоторые

липидсодержащие фаги микоплазм), либо обоими способами (оболочечные

вирусы). Конечно, противопоставление митотического деления клетки и

репликации не абсолютно, так как способы репликации генетического материала

клетки и ДНК-содержащих вирусов принципиально не отличаются, а если учесть,

что и синтез генетического материала у РНК-содержащих вирусов также

осуществляется по матричному типу, то относительным является

противопоставление митоза и репликации всех вирусов. И, тем не менее,

различия в способах размножения клеток и вирусов настолько существенны, что

имеет смысл делить весь живой мир на вирусы и невирусы.

К вирусам не применимы и многие другие понятия, являющиеся

«атрибутами» организмов, и, прежде всего такие фундаментальные понятия, как

«особь», «популяция», «вид».

Принято трактовать понятие «вирион» как вирусный индивидуум, хотя

вирион является лишь определенной стадией жизни вируса, и как раз той

стадией, на которой вирус не проявляет жизнедеятельности. Поэтому было даже

предложено именовать эту стадию существования вируса вироспорой. Между тем

существует несколько групп вирусов, у которых геном не только фрагментарен

(это имеет место и у клеток эукариотов, геном которых дискретен и

существует в виде суммы хромосом), но и разные его фрагменты разобщены и

находятся в различных частицах. Вирус проявляет инфекционные свойства лишь

при попадании полного набора разноименных частиц, число которых у вирусов

растений 2—4, а у некоторых вирусов насекомых до 28. Что же представляет

собой вирусный индивидуум в этих случаях, когда даже понятие «вирион» не

может быть применено?

Переходя к анализу активной жизнедеятельности вируса, которая

целиком сводится к его репродукции, мы обнаруживаем, что место проникшего в

клетку вириона занимают либо голая нуклеиновая кислота его (например, у

вируса полиомиелита), либо нуклеопротеидный комплекс (например, у вируса

гриппа), либо более сложные субвирионные структуры (например, у реовируса).

Затем происходит синтез дочерних молекул вирусного генома. У многих ДНК-

содержащих вирусов этот процесс не только сходен с синтезом клеточной ДНК

хромосом, но и обеспечивается в значительной степени, а иногда почти

полностью клеточными ферментами. Причем это имеет место не только при

образовании простых и мелких вирусов (паповавирусы, парвовирусы), но и при

синтезе сложных вирусов с большим геномом (герпесвирусы, иридовирусы), у

которых некоторая доля синтезов ДНК катализируется собственными ферментами.

Образующиеся при этом репликативные интермедиаты вряд ли могут быть

охарактеризованы как вирусные индивидуумы: это матрицы, на которых

синтезируются многочисленные копии дочерних геномов вируса. У вирусов с

геномом в виде однонитевой РНК они либо информационно бессмысленны, т. е.

не кодируют соответствующие вирусспецифические белки (вирусы с позитивной

полярностью генома), либо, напротив, содержат гены для вирусных белков, так

как вирионная РНК не обладает кодирующими свойствами.

Наряду с продуктивным циклом некоторые ДНК-содержащие вирусы

(умеренные фаги, паповавирусы, вирус гепатита В и др.) могут вступать в

интегративное взаимодействие с клеточным геномом, ковалентно встраиваясь в

него и, превращаясь в группу клеточных генов, которые передаются клеткам –

потомкам (у эукариотов) по законам Менделеева. В этом состоянии

интегрированный вирусный геном, обозначаемый как провирус, фактически

является группой клеточных генов. Если в провирусе произойдет мутация,

делающая невозможным "вырезание" вирусного генома из клеточного, такой

дефектный провирус может навсегда стать составной частью генома. Многие

данные позволяют заключить, что геномы про- и эукариотов имеют в своем

составе интегрированные гены или геномы в прошлом самостоятельных вирусов.

Существует большая группа РНК-содержащих ретровирусов, у

которых на матрице их генома синтезируется комплиментарная ДНК. Она в виде

двунитевой ДНК интегрируется (ковалентно встраивается) в клеточный геном и

в этом виде является матрицей для синтеза дочерних молекул вирионной РНК и

мРНК для синтеза вирусных белков. В обоих случаях (интеграбельные ДНК-

содержащие вирусы, ретро-вирусы) образующийся такими путями провирус

становится, группой клеточных генов.

Эти факты и примеры наглядно иллюстрируют положение о неприменимости

понятия индивидуума к вирусам.

Столь же неприменяемым к вирусам является и понятие популяции, так как

внутриклеточная стадия репродукции, а тем более интеграционные процессы

нацело лишают смысла трактовку репродуцирующегося вируса как популяции. К

этому следует добавить данные о дефектных интерферирующих частицах,

«сопровождающих» почти каждую вирусную инфекцию. Эти частицы представляют

собой вирионы с неполным геномом, поэтому они не способны к репродукции.

Тем не менее, они играют важную биологическую роль, обеспечивая

персистенцию вирусов в инфицированных организмах или в культурах тканей.

Таким образом, вирусная «популяция» чаше всего представляет собой суммы

полноценных вирионов и дефектных образований, т. е. фактически мертвого

материала. Такого рода «популяции», состоящие из живых и мертвых особей,

невозможно даже представить в мире организмов. В некоторых случаях сумма

дефектных частиц с дефектами в разных участках генома может обеспечить

развитие вирусной инфекции (феномен множественной реактивации).

Естественно, в случае, если нет особей, нет популяции, трудно ввести

понятие вида. Этот вывод будет подкреплен далее соображениями о

происхождении и эволюции вирусов. И, тем не менее, эти понятия нашли

применение в вирусологии. Мы говорим о разных реально существующих

популяциях вирусов на уровне как инфицированных организмов, так и популяций

хозяев вирусов, а современная международно-признанная классификация вирусов

основана на выделении видов, родов и даже семейств и применении

биноминальной номенклатуры, которая принята для всех остальных

представителей органического мира. И это не чистые забавы, а теоретически

обоснованные и практически полезные методические подходы. К объяснению этих

парадоксов мы еще вернемся.

Если вирусы не организмы, то чем же тогда они являются? Для того чтобы

ответить на этот вопрос, необходимо очертить круг биологических структур,

которые можно обозначить как вирусы. Это легко, если речь идет об обычных,

общепризнанных вирусах, например, о вирусах оспы или фаге MS2, несмотря на

то, что первый из них имеет геном — ДНК с молекулярной массой до 240·106, а

второй — РНК с молекулярной массой около 1,2·106. Различия между этими

вирусами, вероятно, не менее значимы, чем, скажем, между кишечной палочкой

и слоном или хотя бы любой клеткой этого животного. Однако мир вирусов еще

более богат, если не ограничивать их общепризнанными инфекционными

вирусами.

К числу вирусов, несомненно, следует отнести и дефектные вирусы.

Дефектными являются многие онкогенные ретровирусы, так как приобретение ими

генов, кодирующих онкогены, часто сопровождается делениями остальных генов.

В присутствии полноценных вирусов-помощников, обычно близких к дефектным

биологически, дефектный вирус может либо реплицироваться (если он не имеет

дефект гена полимеразы), либо использовать белки вируса-помощника (если он

имеет дефекты генов внутренних или оболочечных белков). Возможно,

использование и белков биологически отдаленных вирусов: если дефектный, по

оболочечным белкам, ретровирус размножать в присутствии вируса

везикулярного стоматита, то вирионы будут иметь внешнюю оболочку

последнего. Впрочем, для этого даже не надо, чтобы один из вирусов был

дефектным: при смешанной инфекции многими вирусами образуются вирионы,

геном которых заключен в оболочки другого вируса.

В приведенных случаях показана возможность репродукции дефектного

вируса, полученного из вируса полноценного. Но существует несколько групп

вирусов, которые всегда дефектны по репликации и являются сателлитами

полноценных, неродственных им вирусов. Так, аденосателлиты, имеющие

собственный геном и собственные белки, реплицируются в присутствии вирусов-

помощников, которыми могут быть не только аденовирусы, но и герпесвирусы.

Все три группы (дефектные вирусы и две группы вирусов-помощников) являются,

ДНК-содержащими. Вирус некроза табака имеет вирус-сателлит, геном которого

кодирует собственные белки; оба являются РНК-содержащими вирусами.

Сателлитом ДНК-содержащего вируса гепатита является РНК-содержащий дельта-

вирус. В присутствии любого гепаднавируса он реплицируется и образует

нуклеокапсиды из собственного белка, которые покрываются внешней оболочкой

соответствующего гепаднавируса. Во всех этих примерах неспособность

реплицироваться является свойством геномов дефектных вирусов, и эта функция

обеспечивается вирусами-помощниками. Это своеобразный паразитизм вирусов на

вирусах. Здесь же отметим, что дефектные по репликации сателлиты являются

наиболее мелкими вирусами. Так, геном дельта-вируса имеет молекулярную

массу около 0,5·106 и на одном единственном его гене закодирован

единственный капсидный белок.

С сателлитами «сближаются» плазмиды, или, как раньше их называли,

эписомы, экстрахромосомные факторы наследственности. Это относительно

небольшие, обычно с молекулярной массой менее 107, циркулярные, реже

линейные, молекулы ДНК, которые часто обнаруживаются в бактериальных

клетках. Они выполняют разные функции соответственно имеющимся на них

генам: токсины, убивающие насекомых; гены, обусловливающие опухолевые

разрастания у растений; ферменты, разрушающие или модифицирующие

антибиотики; фактор фертильности — фактически индуцирующий половой процесс

у бактерий — обмен генами между хромосомами двух бактерий. У дрожжей

обнаружены киллеры (двунитевая РНК), на которых «закодированы» токсины,

убивающие дрожжевые клетки, не носящие в себе киллеров. От вирусов, в том

числе дефектных, и сателлитов плазмиды имеют два главных отличия: их гены

не кодируют синтез белков, в которые упакованы нуклеиновые кислоты, и

репликация их обеспечивается клеткой. Плазмиды обычно находятся в свободном

виде в цитоплазме, но могут быть интегрированы в геном клетки-носителя,

последняя может и освобождаться от них. Между плазмидами и обычными

вирусами нет резких границ. Так, некоторые плазмиды явно являются

производными фагов, утратив большую часть их генов и сохранив лишь

некоторые из них. Ряд вирусов, например, вирус папилломы коров, может

длительно персистировать в виде плазмид — голых молекул ДНК. В виде плазмид

с полным или частично делетированным геномом могут персистировать вирусы

герпеса. С развитием генной инженерии стали возможными искусственное

получение плазмид из вирусной ДНК, встройка в плазмиды чужеродных генов и

даже искусственное конструирование плазмид из фрагментов клеточной ДНК.

К вирусам примыкают вироиды — возбудители инфекционных болезней растений.

Они не имеют существенных отличии от обычных вирусных болезней, но

вызываются своеобразными структурами — небольшими (молекулярная масса

120000— 160000) циркулярными суперспирализированными молекулами РНК. Во

всем остальном это типичные вирусные болезни с определенными проявлениями,

инфекционностью при механической передаче, размножением вироидов в

зараженных клетках.

Наконец, с вирусными инфекциями имеют сходство болезни животных (овцы,

козы) и человека (болезнь куру, болезнь, Крейтцфельда — Якоба),

выражающиеся в развитии спонги-формных энцефалопатий. Предполагают, что эти

болезни являются результатами выхода из-под контроля генов, кодирующих

белки, которые являются и их продуктами, и их деренрессорами, и причиной

характерных поражений нервных клеток.

Что же объединяет классические вирусы, дефектные, вирусы и сателлиты,

плазмиды и вироиды, прионы (так обозначают возбудителей спонгиформных

энцефалопатий)? Их объединяет то, что все они являются автономными

генетическими структурами, способными функционировать только в клетках, с

разной степенью зависимости от клеточных систем синтеза нуклеиновых кислот

и полной зависимостью от клеточных белоксинтезирующих и энергетических

систем, подвергающихся самостоятельной эволюции. Если рассматривать вирусы

в плане паразитологии, то их паразитирование следует признать не только

внутриклеточным (как это имеет место у риккетсий и хламидий), а

паразитизмом генетическим, так как взаимодействие вируса с клеткой

является, прежде всего, взаимодействием двух геномов — вирусного и

клеточного. Однако такое толкование роли вирусов слишком узко и, как мы

постараемся показать далее, не отражает их роли в эволюции органического

мира. Но прежде чем обсуждать этот вопрос, целесообразно рассмотреть

существующие взгляды на возможное происхождение вирусов. По этому вопросу

были выдвинуты три основные гипотезы.

Согласно первой из них, вирусы являются потомками бактерий или других

одноклеточных организмов, претерпевших дегенеративную эволюцию. Согласно

второй, вирусы являются потомками древних, доклеточных, форм жизни,

перешедших к паразитическому способу существования. Согласно третьей,

вирусы являются дериватами клеточных генетических структур, ставших

относительно автономными, но сохранившим зависимость от клеток.

Возможность дегенеративной эволюции была неоднократно установлена и

доказана, и, пожалуй, наиболее ярким примером ее может служить

происхождение некоторых клеточных органелл эукариотов от симбиотических

бактерий. В настоящее время на основании изучения гомологии нуклеиновых

кислот можно считать установленным, что хлоропласты простейших и растений

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.