реферат, рефераты скачать
 

Ядерное оружие и его поражающее действие


Наводные ядерные взрывы могут осуществляться для поражения крупных надводных кораблей и прочных сооружений военно-морских баз, портов и т.п. когда допустимо или желательно сильное радиоактивное заражение воды и прибрежной местности.

Подводным ядерным взрывом называется взрыв, осуществлённый в воде на той глубине или иной глубине. При таком взрыве вспышка и светящаяся область, как правило, не видны.

При подводном взрыве на небольшой глубине над поверхностью воды поднимается полый столб воды, достигающий высоты более километра; в верхней части столба образуется облако, состоящее из брызг и паров воды; это облако может, достигать несколько километров в диаметре.

Через несколько секунд после взрыва водяной столб начинает разрушаться и у его основания образуется облако, называемое базисной волной, которая состоит из радиоактивного тумана, и она быстро распространяется во все стороны от эпицентра взрыва, одновременно поднимается вверх и относится ветром. Спустя несколько минут базисная волна смешивается с облаком султана (клубящееся облако, окутывающее верхнюю часть водяного столба) и превращается в слоисто-кучевое облако, из которого выпадает радиоактивный дождь. В воде образуется ударная волна, распространяющаяся во все стороны. Высота волны может достигать десятков метров.

Умение различать по внешним признакам ядерные взрывы имеет большое значение, т.к обеспечивает принятие соответствующих мер защиты. По внешним признакам можно оценить вид и мощность ядерного взрыва, однако определение мощности ядерного взрыва будет лишь приближенным.


2. Поражающие факторы ядерного взрыва


В процессе ядерного (термоядерного) взрыва образуется поражающие факторы, ударная волна, световое излучение, проникающая радиация, радиоактивное заражение местности и объектов, а также электромагнитный импульс.


2.1 Воздушная ударная волна ядерного взрыва


Воздушной ударной волной называется резкое сжатие воздуха, распространяющееся в атмосфере со сверхзвуковой скоростью. Она является основным фактором, вызывающим разрушения и повреждения вооружения, боевой техники, инженерных сооружений и местных предметов.

Воздушная ударная волна ядерного взрыва образуется в результате того, что расширяющаяся светящаяся область сжимает окружающие её слои воздуха, и это сжатие, передаваясь от одного слоя атмосферы к другому, распространяющееся со скоростью, значительно превышающей скорость звука и скорость поступательного движения частиц воздуха.

Ударная волна проходит первые 1000 м за 2 с, 2000 м за 5 с, 3000 м за 8 с.


Рис.5. Изменение давления в точке на местности в зависимости от времени действия ударной волны на окружающие предметы: 1 – фронт ударной волны; 2 – кривая изменения давления

Повышение давления воздуха во фронте ударной волны над атмосферным давлением, так называемое избыточное давление во фронте ударной волны Рф измеряется в Паскалях (1Па=1н/м2, в барах (I бар=105Па) или в килограммах силы на см2 (1кгс/см2=0,9807 бар). Оно характеризует силу поражающего действия ударной волны и является одним из её основных параметров.

После прохода фронта ударной волны давление воздуха в данной точке быстро падает, но в течение некоторого времени продолжает оставаться выше атмосферного. Время, в течение которого давление воздуха превышает атмосферное, получило название длительности фазы сжатия ударной волны (r+). Она также характеризует поражающее действие ударной волны.

В зоне сжатия частицы воздуха движутся вслед за фронтом ударной волны со скоростью меньшей, чем скорость движения фронта ударной волны примерно на 300 м/с. На расстояниях от центра взрыва, где ударная волна обладает поражающим действием (êРф>0,2-0,3бар), скорость движения воздуха в ударной волне превышает 50 м/с. При этом суммарное поступательное перемещение частиц воздуха в ударной волне может достигать нескольких десятков и даже сотен метров. В следствие этого в зоне сжатия возникает сильное давление скоростного (ветрового) напора, обозначается êРск.

В конце фазы сжатия давление воздуха в ударной волне становится ниже атмосферного, т.е. за фазой сжатия следует фаза разряжения.

В результате воздействия ударной волны человек может получить контузии и травмы различной степени тяжести, которые вызываются как всесторонним обжатием тела человека избыточным давлением в фазе сжатия ударной волны, так и действием скоростного напора и давлением отражения. Кроме того, в результате действия скоростного напора ударная волна по пути своего движения подхватывает и несет с большой скоростью обломки разрушенных зданий и сооружений и сучья деревьев, мелкие камни и другие предметы, способные наносить поражения открыто расположенным людям.

Непосредственно поражение людей избыточным явлением ударной волны, давлением скоростного напора и давлением отражения называется первичным, а поражения, вызванные действием различных обломков - косвенным или вторичным.


Таблица 4. Расстояния, на которых наблюдается выход из строя личного состава от действия ударной волны при открытом расположении на местности в положении стоя, км

Приведенная высота взрыва, м/т1/3

Мощность взрыва, кт

1

3

10

30

50

100

0

0,36

0,63

1,15

1,8

2,25

3

7

0,38

0,63

1,15

1,8

2,3

3,75

12

0,42

0,7

1,25

2,1

2,65

3,7

20

0,46

0,8

1,5

2,4

2,95

3,95


На распространение ударной волны и ее разрушающее и поражающее действие существенное влияние могут оказать рельеф местности и лесные массивы в районе взрыва, а также метеоусловия.

Рельеф местности может усилить или ослабить действие ударной волны. Так. на передних (обращенных в сторону взрыва) склонах возвышенностей и в лощинах, расположенных вдоль направления движения волны, давление выше, чем на равнинной местности. При крутизне склонов (угол наклона склона к горизонту) 10-15° давление на 15-35% выше, чем на равнинной местности; при крутизне склонов15-30° давление может увеличиться в 2 раза.

На обратных по отношению к центру взрыва склонах возвышенностей, а также в узких лощинах и оврагах, расположенных под большим углом к направлению распространения волны, возможно уменьшение давления волны и ослабление ее поражающего действия. При крутизне склона 15-30° давление уменьшается в 1,1-1,2 раза, а при крутизне 45-60° - в 1,5-2 раза.

В лесных массивах избыточное давление на 10-15% больше, чем на открытой местности. Вместе с тем в глубине леса (на расстоянии 50-200 м и более от опушки в зависимости от густоты леса) наблюдается значительное снижение скоростного напора.

Метеорологические условия оказывают существенное влияние только на параметры слабой воздушной ударной волны, т.е. на волны с избыточным давлением не более 10 кПа.

Так, например, при воздушном взрыве мощностью 100 кт это влияние будет проявляться на расстоянии 12...15 км от эпицентра взрыва. Летом в жаркую погоду характерно ослабление волны по всем направлениям, а зимой - ее усиление, особенно в направлении ветра.

Дождь и туман также могут заметно повлиять на параметры ударной волны, начиная с расстояний, где избыточное давление волны200-300 кПа и менее. Например, где избыточное давление ударной волны при нормальных условиях 30 кПа и менее, в условиях среднего дождя давление уменьшается на 15%, и сильного (ливневого) - на30%. При взрывах в условиях снегопада давление в ударной волне снижается весьма незначительно и его можно не учитывать.

Защита личного состава от ударной волны достигается уменьшением воздействия на человека избыточного давления и скоростного напора. Поэтому укрытие личного состава за холмами и насыпями в оврагах, выемках и молодых лесах, использование фортификационных сооружений, танков, БМП, БТР, снижает степень его поражения ударной волной.

Если принять, что при воздушном ядерном взрыве безопасное расстояние для незащищённого человека доставляет несколько км, то личный состав, находящийся в открытых фортификационных сооружениях (траншеи, хода сообщения, открытые щели), не будет поражен ужена удалении 2/3 от безопасного расстояния. Перекрытые щели и траншеи уменьшают радиус поражающего действия в 2 раза, а блиндажи - в 3 раза. Личный состав, находящийся в подземных прочных сооружениях на глубине более 10 м, не поражается даже в том случае если это сооружение находится в эпицентре воздушного взрыва. Радиус поражения техники, расположенной в окопах и котлованных укрытиях, в 1,2-1,5раза меньше, чем при открытом расположении.


2.2 Световое излучение ядерного взрыва


Световое излучение ядерного взрыва представляет собой поток лучистой энергии, состоящей из ультрафиолетовых, видимых и инфракрасных лучей.

Источником светового излучения являемся светящаяся область ядерного взрыва, образовавшаяся в результате нагрева до высоких температур окружающего центр взрыва воздуха. Температура на поверхности светящейся области в начальный момент достигает сотен тысяч градусов. Но мере расширения светящейся области и теплоотдачи в окружающую среду температура на её поверхности понижается.

Световое излучение, как и любые другие электромагнитные волны, распространяется в пространстве со скоростью почти300.000 км/с и длится в зависимости от мощности взрыва от одной до нескольких секунд.

Основным параметром светового излучения является световой импульс U, т.е. количество энергии светового излучения, которое приходится на I см2 облучаемой поверхности, перпендикулярной направлению излучения, за все время свечения.

В атмосфере лучистая энергия всегда ослабляется из-за рассеивания и поглощения света частицами пыли, дыма, каплями влаги (туман, дождь, снег). Степень прозрачности атмосферы принято оценивать коэффициентом К, характеризующим степень ослабления светового потока. Считается, что в крупных промышленных городах степень прозрачности атмосферы можно охарактеризовать видимостью в 10-20 км;

в пригородных районах - 30-40 км; в районах сельской местности - 60-80 км.

Световое излучение, падающее на объект, частично поглощается, частично отражается, а если объект пропускает излучение, то частично проходит сквозь него. Стекло, например, пропускает более 90% энергии светового излучения. Поглощенная световая энергия преобразуется в тепловую, вызывает нагрев, воспламенение или разрушение объекта.

Степень ослабления светового излучения зависит от прозрачности атмосферы, т.е. чистоты воздуха. Поэтому, одни и те же значения световых импульсов при чистом воздухе будут наблюдаться на больших расстояниях, чем при наличии дымки, запыленном воздухе, тумане.

Поражающее действие светового излучения на людей и различные объекты обусловлена нагревом облучаемых поверхностей, приводящих к ожогам кожи человека и поражений глаз, воспламенению или обугливанию горючих материалов, деформациям, оплавлению и структурным изменениям негорючих материалов.

Световое излучение при непосредственном воздействии на людей может вызывать ожоги открытых и защищенных одеждой участков тела, а также поражение органа зрения. Кроме того ожоги могут возникать в результате поваров и действия горючего воздуха в ударной волне.

Световое излучение, в первую очередь, воздействует на открытые участки тела - кисти рук, лицо, тело, а также на глаза. Различают четыре степени ожогов: ожог первой степени представляет собой поверхностное поражение кожи, внешне проявляющиеся в её покраснении; ожог второй степени характеризуется образованием пузырей; ожог третьей степени вызывает омертвление глубоких слоев кожи; при ожоге четвертой степени обугливается кожа и подкожная клетчатка, а иногда и более глубокие ткани.


Таблица 5. Величины световых импульсов, соответствующие ожогам кожи различной степени, Кал/см2

Степень

ожога

Открытые участки кожи при мощности взрыва, кт

Участки кожи под обмундированием

1

10

100

1000

Летним

Зимним

Первая

2,4

3,2

4

4,8

6

35

Вторая

4

6

7

9

10

40

Третья

8

9

11

12

15

50

Четвертая

>8

>9

>11

>12

>15

>50


Защита от СИ более проста, чем от других поражающих факторов ядерного взрыва, поскольку любая непрозрачная преграда, любой объект, создающие тень, могут служить защитой от светового излучения.

Эффективным способом защиты личного состава от светового излучения является быстрое залегание за какою-либо преграду. Если при вспышке взрыва ядерного боеприпаса крупного калибра человек успеет занять укрытие в течении 1-2 с, то время действия на него светового излучения будет уменьшено в несколько раз, что значительно снизит вероятность поражения.

При угрозе применения ядерного оружия экипажи танка, БМП, БТР должны закрыть люки, а внешние приборы наблюдения должны иметь автоматические устройства, закрывающие их при ядерном взрыве.

Военная техника и другие наземные объекты в результате воздействия светового излучения могут быть уничтожены или повреждены пожарами. А в приборах ночного видения могут выходить из строя электронно-оптические преобразователи. Световое излучение приводит к возникновению пожаров в лесу и населенных пунктах.

В качестве дополнительных мер защиты от поражающего действия светового излучения рекомендуется следующее;

использование экранирующих свойств оврагов, местных предметов;

постановка дымовых завес для поглощения энергии светового излучения;

повышение отражательной способности материалов (побелка мелом, покрытие красками светлых тонов);

повышение стойкости к воздействию светового излучения (обмазка глиной, обсыпка грунтом, снегом, пропитка тканей огнестойкими составами);

проведение противопожарных мероприятий (удаление сухой травы и других горючих материалов, вырубка просек и огнезащитных полос);

использование в темное время суток средств защиты глаз от временного ослепления (очков, световых затворов и др.).

Проникающая радиация ядерного взрыва.

Проникающая радиация ядерного взрыва представляет собой поток гамма лучей и нейтронов, испускаемых в окружающую среду из зоны ядерного взрыва.

Поражающее действие на организм человека оказывают только свободные нейтроны, т.е. те, которые не входят в состав ядер атомов. При ядерном взрыве они образуются в процессе цепной реакции деления ядер урана или плутония (мгновенные нейтроны) и при радиоактивной распаде осколков их деления (запаздывающие нейтроны).

Суммарное время действия основной части нейтронов в районе ядерного взрыва равно примерно одной секунде, а скорость их распространения от зоны ядерного взрыва десятки и сотни тысяч километров в секунду, но меньше, чем скорость света.

Основным источником потока гамма-излучения при ядерном взрыве является реакция деления ядер вещества заряда, радиоактивный распад осколков деления и реакция захвата нейтронов ядрами атомов среды.

Время действия проникающей радиации на наземные объекты зависит от мощности боеприпаса и может составить 15-25 с с момента взрыва.

Радиоактивные осколки деления ядер находятся в начале в светящейся области, а затем в облаке взрыва. Вследствие подъема этого облака, расстояния от него до земной поверхности быстро увеличивается, а суммарная активность осколков деления вследствие их радиоактивного распада снижается. Поэтому происходит быстрое ослабление потока гамма лучей, достигающих земной поверхности и действие гамма-излучения на земные объекты через указанное время (15-25 с) после взрыва практически прекращается.

Гамма лучи и нейтроны, распространяясь в среде, ионизируют ее атомы, что сопровождается расходом энергии гамма квантов и нейтронов. Количество энергии, теряемой гамма квантами и нейтронами на ионизацию единицы массы среды, характеризует ионизирующую способность, а следовательно, и поражающее действие проникающей радиации.

Гамма - и нейтронное излучения, так же как и альфа - и бета-излучения, различаются по своему характеру, однако общим для них является то, что они могут ионизировать атомы той среды, в которой они распространяются.

Альфа-излучение представляет собой поток альфа-частиц, распространяющихся с начальной скоростью около 20 000 км/с. Альфа-частицей называется ядро гелия, состоящее из двух нейтронов и двух протонов. Каждая альфа-частица несет с собой определенную энергию. Из-за относительно малой скорости и значительного заряда альфа-частицы взаимодействуют с веществом наиболее эффективно, т.е. обладают большой ионизирующей способностью, вследствие чего их проникающая способность незначительна. Лист бумаги полностью задерживает альфа-частицы. Надежной защитой от альфа-частиц при внешнем облучении является одежда человека.

Бета-излучение представляет собой поток бета-частиц. Бета-час-тицей называется излученный электрон или позитрон. Бета-частицы в зависимости от энергии излучения могут распространяться со скоростью, близкой к скорости света. Их заряд меньше, а скорость больше, чем альфа-частиц. Поэтому бета-частицы обладают меньшей ионизирующей, но большей проникающей способностью, чем альфа-частицы. Одежда человека поглощает до 50% бета-частиц. Следует отметить, что бета-частицы почти полностью поглощаются оконными или автомобильными стеклами и металлическими экранами толщиной в несколько миллиметров.

Поскольку альфа - и бета-излучения обладают малой проникающей, но большой ионизирующей способностью, то наиболее опасно их действие при попадании внутрь организма или непосредственно на кожу (особенно на глаза) веществ их испускающих.

Гамма-излучение представляет собой электромагнитное излучение, испускаемое ядрами атомов при радиоактивных превращениях. По своей природе гамма-излучение подобно рентгеновскому, но обладает значительно большей энергией (меньшей длиной волны), испускается отдельными порциями (квантами) и распространяется со скоростью света (300 000 км/с). Гамма-кванты не имеют электрического заряда, поэтому ионизирующая способность гамма-излучения значительно меньше, чем у бета-частиц и тем более у альфа-частиц (в сотни раз меньше, чем у бета - и в десятки тысяч, чем у альфа-частиц). Зато гамма-излучение обладает наибольшей проникающей способностью и является важнейшим фактором поражающего действия радиоактивных излучений.

Нейтронное излучение представляет собой поток нейтронов. Скорость нейтронов может достигать 20 000 км/с. Так как нейтроны не имеют электрического заряда, они легко проникают в ядра атомов и захватываются ими. Нейтронное излучение оказывает сильное поражающее действие при внешнем облучении.

Сущность ионизации заключается в том, что под воздействием радиоактивных излучений электрически нейтральные в нормальных условиях атомы и молекулы вещества распадаются на пары положительно и отрицательно заряженных частиц-ионов. Ионизация вещества сопровождается изменением его основных физико-химических свойств, в биологической ткани - нарушением ее жизнедеятельности. И то и другое при определенных условиях может нарушить работу отдельных элементов, приборов и систем производственного оборудования, а также вызвать поражение жизненно важных органов, что в конечном итоге повлияет на жизнедеятельность.

Степень ионизации среды проникающей радиацией характеризуется дозой радиации. Различают экспозиционную и поглощенную дозы радиации.

Экспозиционная доза выражает степень ионизации среды через суммарный электрический заряд ионов (каждого знака), образующихся в единице массы вещества в результате радиоактивного облучения. В настоящее время экспозиционную дозу рентгеновского и гамма-излучения принято измерять в рентгенах.

Рентген (Р) - такая доза рентгеновского и гамма излучения, при которой в 1 см3 сухого воздуха при температуре 0°С и давлении 760 мм рт. ст. образуется 2,08 млрд. пар ионов с суммарным зарядом каждого знака в I электрическую единицу электричества

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.