реферат, рефераты скачать
 

Керамзит


p> Внутри кипящего слоя можно сжигать твердое, жидкое и газообразное топливо или подавать для обжига теплоноситель извне. Поверхность контакта зерен обжигаемого материала и теплоносителя достигает в кипящем слое максимальной величины, вследствие чего коэффициент теплопередачи отличается весьма высокими показателями—около 209 Вт/м 2 с).

Увеличение поверхности контакта способствует ускорению тепло- и массообмена, а непрерывное перемешивание частиц материала обеспечивает выравнивание температуры в слое, что позволяет проводить процесс быстро и в небольших рабочих объемах. Процессы в кипящем слое легко регулируются и поддаются автоматизации. Как показала практика, в кипящем слое можно обрабатывать зерна твердых материалов размером от долей миллиметра до 10 мм при различной влажности, так как влага, попадающая в кипящий слой, почти мгновенно испаряется.

Наряду с большими достоинствами метод кипящего слоя обладает и рядом недостатков. Так, интенсивное движение частиц в слое и взаимное их перемещение не позволяют предсказать положения частицы в какой-либо промежуток времени. Это означает, что часть поступающих в камеру свежих частиц может скорее выйти из слоя, чем это требуется, и перегревается, что для ряда технологических процессов неприемлемо. Другой недостаток метода вытекает из условий взаимного соударения частиц и ударов их о стенки камеры, что приводит к истиранию материала и накоплению пыли, а также преждевременному износу аппарата.

Печи для обжига в кипящем слое имеют самую разнообразную конструкцию.
Они подразделяются на одно- и многокамерные. Каждая печь состоит из камеры, свода, пода, устройств для загрузки и выгрузки материала и газоходов.

Места загрузки и выгрузки материала могут быть расположены сверху, снизу или сбоку печи, но всегда друг против друга. Наиболее существенной частью печи является под, представляющий собой устройство для равномерного распределения газа (воздуха), поступающего в печь, по нижнему горизонтальному сечению слоя. Каждая рабочая камера печи в горизонтальном сечении может быть выполнена в форме квадрата, прямоугольника, круга и т. д.

Циркуляционный способ

Кипящий слой псевдоожиженного зернистого материала восходящими вверх газовыми потоками является не единственным его состоянием в этих условиях.
Так, если в камеру 1 (рис. 1) на решетку 3 через патрубок 4 засыпать гранулированный материал, то он образует плотный слой с определенной межзерновой пустотно-стью. При подаче через этот слой восходящего потока газа с постепенно увеличивающейся скоростью материал сперва будет оставаться неподвижным, а сопротивление слоя будет расти с увеличением скорости газа. Когда же сила сопротивления фильтрации- газа сравняется с весом слоя зернистого материала, то дальнейший рост гидравлического сопротивления прекращается и увеличение скорости газового потока приводит к расширению слоя. При этом слой взвешивается, увеличивается в объеме, частицы приобретают подвижность. Поверхность слоя в этом случае выравнивается, и если в стенке камеры сделать отверстие 2, то через него будет вытекать струя материала. Это и послужило основанием назвать слой зернистого материала со свойствами текучести—псевдоожиженным. При дальнейшем увеличении скорости газа через псевдоожиженный слой будут прорываться пузырьки, слой начнет интенсивно перемешиваться и бурлить, напоминая кипящую жидкость, что послужило основанием назвать его в этом состоянии кипящим слоем. Характерным состоянием кипящего слоя является его относительная плотность, при которой зерна не отрываются в пространство для витания.

Новое увеличение скорости газа сопровождается выносом зерен материала из кипящего слоя.

Рис.1 Схематическое изображение фонтанирующего слоя

1 — корпус; 2 — центральный фонтан; 3 — решетка; 4 — патрубок для подвода газа;

5 — конус материала;

Происходящая таким образом циркуляция частиц— подъем в фонтане центральной части слоя и опускание в периферийной — отражает новое состояние материала, получившего название фонтанирующего слоя. Циркуляция частиц здесь более интенсивна, чем в обычных псевдоожиженных слоях.

В Советском Союзе устройства с фонтанирующим слоем появились значительно раньше, чем за рубежом. Они использовались при сушке хлопка, зерна, торфа, в топочной технике и т. д. Большой интерес представляет и обжиг керамзита в фонтанирующем слое. В последние годы в ФРГ были проведены успешные опыты и предложен для практики новый циркуляционный способ производства керамзита с обжигом в фонтанирующем слое.

Построенная в 1965 г. фирмой «Деннерт» в г. Хенге близ Нюрнберга установка производительностью 400м3 керамзитового гравия в сутки с использованием метода обжига заполнителя в фонтанирующем слое характеризуется следующими особенностями.

Сырьем для производства керамзита служит тонкодисперсная легкоплавкая глина с карьерной влажностью 13—15%. При указанной влажности глина сравнительно плотная и может подвергаться тонкому дроблению без замазывания механизмов. Ее химический состав характеризуется содержанием (в %):
SiO2—49,10; Fe2О3— 7,98; А1203— 21,89; MnO—0,11; CaO—3,58; MgO—1,57;
SO2—1,85; R20—2,86 и ППП—11,06.

На карьере глину добывают многоковшовым экскаватором на гусеничном ходу. Параллельно фронту добычи глины установлен ленточный конвейер длиной
150 м. Предварительно глину, доставляемую с карьера. измельчают на валковой дробилке. Затем она поступает в ящичный подаватель, проходит через металлический желоб с электромагнитом для очистки от металлических включений и поступает в ударно-отражательную дисковую мельницу, где тонко измельчается и гомогенизируется при естественной влажности. Далее тонкоизмельченная глина непрерывным потоком направляется в тарельчатый гранулятор, где к ней добавляют 2—4 % воды и специальную добавку, способствующую образованию шаровидной формы гранул. По ленточному конвейеру гранулы поступают в сушильный противоточный барабан длиной 10 и диаметром
1,5 м.

После выхода из сушильного барабана от материала отделяются мелкие и крупные фракции, которые направляются обратно для повторной переработки в ударно-отражательную дисковую мельницу, а гранулы размером от 1 до 12 мм, нагретые в сушильном барабане до 200 °С, конвейером подаются в промежуточный бункер объемом 5 м3.

При рассмотренной системе подготовки перерабатываться может также глина и с влажностью выше 20 °/о. В этом случае мельница, тарельчатый гранулятор и сушильный барабан имеют соответственно большие размеры и постоянно загружаются с избытком. Избыточный материал автоматически отводится обратно в мельницу. Здесь сухой материал смешивается с влажным сырьем и перерабатывается по схеме.

Печная установка состоит из бункера объемом 5 м3, загрузочного шлюза, камеры обжига, специальной горелки и затвора. Установка работает периодически с загрузкой каждые 40 с.

Из бункера сухие гранулы поступают в объемный дозатор, откуда они периодически загружаются в печь, где обжигаются в фонтанирующем слое
(рис.3).

Рис.3 Схема печи с фонтанирующим слоем

1— отходящие газы;

2—загрузка;

3 — выгрузка

В печи гранулы захватываются идущим вверх потоком газов и поднимаются вверх до тех пор, пока сила газового потока не станет меньше силы тяжести обжигаемого материала, который попадает вниз, затем снова захватывается и поднимается потоком газа и т. д. Циркулируя таким образом в течение 40 с, гранулы вспучиваются. Затем подача топлива прекращается, открывается затвор и в течение 4 с вспученный материал выгружается. Обожженный материал отгружается конвейером на сортировку, а новая партия гранулированного материала поступает в печь на вспучивание.

Вследствие теплового удара зерна керамзита имеют твердую прочную оболочку, значительно увеличивающую прочность зерна. При этом вследствие равномерной тепловой обработки мелкие и крупные гранулы одинаково хорошо вспучиваются. Печь футерована огнеупорным легковесным теплоизоляционным материалом. Наружная температура стены не превышает 50 °С, т. е. потери теплоты через излучение малы.

Высота обжиговой печи 10 м, внутренний диаметр в свету 2,5 м. За исключением затвора и шлюза подвижных деталей печь не имеет. Отработанные дымовые газы из печи поступают в сушильный барабан и после выхода из него обеспыливаются в циклонах.

В противоположность классическому способу производства керамзита во вращающихся печах циркуляционный способ позволяет пускать и останавливать всю установку в любое время без опасности для печи и футеровки, а также без больших теплопотерь. На растопку полностью остывшей установки требуется 60 мин, а частично остывшей— 15 мин.

Управление всей установкой автоматизировано. Продолжительность загрузки и разгрузки печи контролируется реле времени. Изменение продолжительности или температуры обжига вызывает изменение насыпной плотности обжигаемого материала и наоборот. Зона обжига контролируется телевизионной камерой, а работа печи регулируется с пульта управления. Печь в настоящее время работает на легком моторном масле, но может также работать на природном газе и мазуте. Расход теплоты на обжиг 1 кг керамзита в фонтанирующем слое составляет всего 3990 кДж, а расход электроэнергии 15 кВт/т. Выпускаемый керамзитовый гравий с насыпной плотностью 500 кг/м3 характеризуется повышенной прочностью и используется для приготовления высоко-прочного керамзитобетона при изготовлении напряженно-армированных конструкций.

Схема производства керамзитового гравия с обжигом по циркуляционному способу показана на рис. 4

Рис.4 Технологическая схема производства керамзитового гравия по циркуляционному способу

1 — многоковшовый экскаватор; 2 — валковая дробилка; 3 — ящичный подаватель (100 м3); 4 — ударно-отражательная дисковая мельница; 5 — тарельчатый гранулятор; 6 — шнек для отвода пыли; 7 — циклонный пылеулавливатель; 8 — сушильный барабан; 9 — ковшовый элеватор; 10 — запасной бункер (5 м3), 11 —загрузочный шлюз;

12 — печь с фонтанирующим слоем.

Вспучивание глинистого сырья на керамзит вибрационным методом

Новизна метода, названного вибрационным, состоит в применении для обжига керамзитового гравия специальной комбинированной установки, выполняющей следующие технологические функции: сушку гранулированного материала, предварительный его подогрев, вспучивание и охлаждение обожженного продукта.

Существенная особенность вибрационного способа изготовления керамзитового гравия—приготовление гранулированного глинистого сырца шаровидной формы и примерно одинакового размера, что легко достигается на тарельчатом грануляторе.

Технологический процесс изготовления керамзитового гравия по вибрационному способу характеризуется следующей последовательностью.
Исходная глина в природном состоянии или после ее подсушки до 15%-ной влажности измельчается в порошок с максимальным размером зерен около 0,2 мм и подается в тарельчатый гранулятор, где при добавке 2—4 % воды формуются шаровидной формы гранулы примерно одинакового размера. Для лучшего склеивания порошкообразного материала применяют специальную химическую добавку.

Одинаковый размер гранул при формовании достигается правильно отрегулированным положением тарелки, скоростью ее вращения и дозированием воды.

Вибрационная установка работает по следующей схеме. Полученный на тарельчатом грануляторе однородный по размеру зерен материал по загрузочной трубе подается в сушильную камеру установки (рис. 5), откуда под действием силы тяжести поток материала поступает в шахту предварительного нагрева. В шахте происходит теплообмен между материалом и восходящими потоками топочных газов, поступающих из камеры горения.

Рис.5 Установка для производства керамзита по вибрационному методу (ФРГ)

1—загрузка; 2 — шахта для подогрева; 3 — вибростол;4— выгрузка

Установку для вспучивания загружают через загрузочный желоб, работу которого регулируют с помощью электромагнитных импульсов

Гранулированный материал проходит горизонтальную область зоны вспучивания в течение примерно 1 мин. Зона обогревается непосредственно c помощью двух пар форсунок, работающих на жидком топливе. Температура в зоне вспучивания поддерживается на уровне около 1100°С. Вибрирующая поверхность транспортера на качающейся рамес воздушным охлаждением защищена от воздействия высоких температур огнеупорной футеровкой. Материал движется по инерционному столу спокойным потоком.

Горячие, вспученные зерна скатываются на охлаждающий желоб.

Достоинством установки является то, что она объединяет в одной конструкции устройства для сушки, подогрева, вспучивания и охлаждения. Это делает ее весьма энергетически экономичной. Расход теплоты на 1 кг керамзита составляет около 2940 кДж, а электроэнергии—около 14,5 кВт-ч на 1 т. Конструктивные размеры печи производительностью 50 т керамзита в сутки следующие: площадь основания 24 м2, высота 10 м.

Вспучивание глинистого сырья на керамзит в электрическом поле высокой частоты

Применение метода кипящего слоя позволило устранить ряд недостатков классической технологии производства керамзита с обжигом во вращающихся печах, однако многие из них, особенно обусловленные нерациональным топливосжиганием и подводом теплоты к частицам материала, остались нерешенными.

Глинистые гранулы различных размеров и формы как в отдельности, так и в слое в разные периоды обжига имеют различную влажность, плотность, теплопроводность и температуропроводность. Поэтому они нагреваются и вспучиваются неравномерно, что приводит к преждевременному перегреву одних и недожогу других, а показатели насыпной плотности и прочности керамзита характеризуются нередко большим разбросом.

Тодес О. М., Гринбаум М. Б., Станякин В. М., Черем-ский А. Л. и др. предложили и исследовали новый метод получения керамзита с обжигом в электрическом поле высокой частоты, в значительной мере лишенный указанных недостатков. Способ основан на использовании токов высокой частоты для внутреннего диэлектрического нагрева зерен глинистого материала до температуры вспучивания и выделения теплоты при поддержании экзотермических реакций в температурном интервале порообразования.

Воздействие поляризации в высокочастотном поле на глинистый материал приводит к интенсификации реакций газовыделения, что исключает необходимость ввода ряда добавок, стимулирующих вспучивание.

Тепловой высокочастотный удар обеспечивает также перемещение ряда реакций газовыделения в область высоких температур, когда материал приводится в пиропластическое состояние с оптимальной для вспучивания вязкостью. Особое преимущество диэлектрического нагрева состоит в определенной его избирательности, что делает процесс обжига стабильным и не зависимым от плотности, размера формы, теплопроводности и температуропроводности зерен материала.

Рациональное аппаратурное оформление конструкции установки, сочетающей в себе высокочастотный нагрев в кипящем слое с эффективным использованием теплоты отходящего газа и керамзита в двух движущихся слоях, показано на рис. 6.

Рис. 6. Схема модели печи кипящего слоя с обжигом в электрическом поле токов высокой частоты и распределения температуры газов и материала по высоте

Гранулированный материал равномерно подается из бункера 1 питателем 2 через патрубок 3 в движущийся слой 4. В этом слое материал прогревается за счет отходящих газов, направляемых через патрубок 13. Далее материал через отверстия решетки 5, регулируемые шибером 12, поступает в кипящий слои 6 на решетку 10. Кипящий слой, в котором частицы поддерживаются в псевдоожиженном состоянии, нагревается до температуры вспучивания токами высокой частоты через пластины высокочастотного конденсатора 11, и вспученный материал через патрубок 7 отводится в зону слоя 9, где охлаждается воздухом, поступающим из паукообразного распределителя 8, и отводится на транспортер.

На основе проведенных исследований осуществляется отработка технологических и электрических параметров установок полигонного и стационарного типов.

Производство керамзита по ступенчатому способу в кольцевой печи с вращающимся подом

Отмечая известные, серьезные недостатки распространенных однобарабанных вращающихся печей для производства керамзита: нестабильность выпуска заполнителя по прочности и плотности; сложность обжига слабовспучивающихся с малым интервалом вспучивания глин; невозможность создания в них требуемого ступенчатого режима термообработки гранул на керамзит; большой унос мелочи и т. д.,—Р. Б. Оганесян, Н. А.Тетруашвили и В. А.
Мещеряков предложили использовать для этих целей модернизированную кольцевую печь с вращающимся подом, широко распространенную в металлургической промышленности2.

В общем виде технологическая схема производства керамзита на указанной линии предусматривает формовку сырцовых гранул на ленточном кирпичеделательном прессе, сушку в сушильном барабане с окаткой в нем гранул, подогрев полуфабриката в слоевом подогревателе примерно до 200—250°
С с последующим вспучиванием гранул в кольцевой печи на непрерывно вращающемся поде при однослойной его загрузке, охлаждение, сортировку и складирование заполнителя.

Обжиговый агрегат технологической линии включает слоевой подогреватель, кольцевую обжиговую печь и холодильник-аэрожелоб.

Кольцевая печь (рис. 7) состоит из стационарных стен толщиной 750 мм и свода с теплоизоляционной засыпкой—700 мм, вращающегося пода (включая металлическую платформу, футеровку толщиной 500 мм, кольцевой рольганг), гидрозатвора. Средний диаметр кольцевой печи 11,25, ширина 2,4, высота от поверхности пода до замка свода 0,81 м. Длина зоны обжига (от узла загрузки до узла выгрузки керамзита) 28 м, в том числе зоны расположения горелок—19 м.

Рис.7 Схема кольцевой печи для обжига керамзита

1. — труба дымовая; 2 — кладка печи; 3 — газооборудование; 4 — футеровка кольцевого пода; 5—выгружатель; 6—подготовитель слоевой; 7 — вентиляционная установка слоевого подготовителя; 8 — автоматика; 9 — установка дымовых вентиляторов и рекуператора; 10—под кольцевой с приводом;
11 — каркас печи.

Кольцевой канал заканчивается дымоотборной шахтой, из которой дымовые газы по борову подаются в слоевой подогреватель и далее дымососом направляются в трубу. Часть дымовых газов поступает в сушильный барабан.

На участках газопровода предусмотрены поворотные заслонки для автоматического регулирования расхода природного газа. Керамзит с поверхности футеровки пода удаляется выгружателем. Частота вращения пода печи изменяется плавно в широких пределах с помощью регулируемого асинхронного электропривода. Контроль и управление процессом обжига, управление работой оборудования печи осуществляется со щита КИП.

Нельзя не отметить, что значительное число зерен, обжигаемых в монослое, имеет приплюснутую, а не округлую или гравелистую форму, что противоречит требованиям к размеру и форме легких заполнителей бетона.

Авторы все еще продолжают сравнивать расход топлива с однобарабанными вращающимися печами. Между тем расход топлива на обжиг следует сравнивать не с однобарабанными, а двухбарабанными печами или им подобными, где к настоящему времени расход теплоты не превышает 2500—3360 кДж/кг, или в 2—3 раза меньше, чем в однобарабанных.

3.3. Режим работы цеха.

Отправными данными для расчета технологического оборудования, потоков сырья и т.п. является режим работы цеха,

Режим работы устанавливают в соответствии с трудовым законодательством по нормам технологического проектирования предприятий вяжущих веществ»

При назначении режима работы цеха необходимо стремиться обеспечить возможно более полное использование оборудования /основных фондов/ и принимать наибольшее количество рабочих смен в сутки

Завод по производству керамзитового гравия будет иметь два цеха основного производства: цех обжига и цех помола.

Цеха помола чаще работают по режиму прерывной недели в три смены. При этом при трехсменной работе в неделю с одним выходным днем в каждую восьмую неделю расчетное количество рабочих суток в году принимают равным - 253 рабочим дням (5 дней в неделю по 23 ч) в утреннюю и вечернюю смену по 7,5 ч с обеденным перерывом 0,5 ч и в ночную смену 7 ч без обеденного перерыва и
52 субботних дня с одной сменой по 8 ч.

Расчетный годовой фонд времени работу технологического оборудования в часах, на основании которого рассчитывается производственная мощность предприятия в целом и отдельных линий установок, определяют по формуле

[pic] где Вр—расчетный годовой фонд времени работы технологического оборудования, ч;

Ср—расчетное количество рабочих суток в году;

Ч--количество рабочих часов в году;

Ки--среднегодовой коэффициент использования технологического оборудования,

При прерывной рабочей неделе с двумя выходными днями при трехсменной работе Ки принимается равным 0,876.

Годовой фонд работы оборудования составляет

— при трехсменной работе - 253 дн х 23 ч + 52 дн х В ч = б235 ч.

Расчетный фонд рабочего времени составит [pic]=6235 х 0,876 = 5462 ч.

3.4. Расчет производительности, грузопотоков и определение расхода сырьевых материалов.

Производство заполнителей для бетона связано с переработкой и транспортировкой больших количеств материалов. При этом объем перерабатываемых материалов изменяется в связи с неизбежными потерями технологического (обжиг, сушка) и механического (унос, распыл) характера.
Учет изменений, происходящих в перерабатываемых материалах на всех стадиях производственного процесса, необходим для определения расхода сырьвых материалов и для расчета и подбора оборудования.

Определение количества материалов, проходящих через отдельные технологические операции, называют расчетом грузопотоков. Расчет ведут, исходя из программы производства, начиная со склада готовой продукции к складам сырья.

Размеры технологических потерь определяют по нормативным денным.
Размеры механических потерь во многом зависят от организации производственного процесса и применяемого оборудования и принимаются на основании опыта аналогичных предприятий.

В проекте могут быть приняты следующие размеры механических потерь:

1. Потери при дроблении – 1%

2. Потери при транспортировке дробленого материала – 1%

3. Потери при помоле - 1 %

4. Потери при транспортировке тонкомолотых материалов – 0,5%,

Расчет грузопотоков цеха по производству керамзитового гравия

Сырье для керамзитового гравия является: глина– 95%, вода--4%, добавка химическая (лигносульфанаты) --1%

Для производства керамзитового гравия вибрационным методом используем сухое глинистое сырье однородное по составу и практически не содержащее вредных включений с насыпной плотностью в естественном состоянии 1500 кг/м3.

Страницы: 1, 2, 3, 4, 5


ИНТЕРЕСНОЕ



© 2009 Все права защищены.