реферат, рефераты скачать
 

Теория организации и системный анализ


p> Иными словами — в реальных системах вполне возможно логическое обоснование моделей элементов. Эти модели мы как раз и стремимся строить минимально достаточными, простыми настолько, насколько это возможно без потери сущности процессов. Но логически осмыслить взаимодействие десятков, сотен элементов человек уже не в состоянии. И именно здесь может “сработать” известное в математике следствие из знаменитой теоремы Гёделя — в сложной системе, полностью изолированной от внешнего мира, могут существовать истины, положения, выводы вполне
“допустимые” с позиций самой системы, но не имеющие никакого смысла вне этой системы.

То есть, можно построить логически безупречную модель реальной системы с использованием моделей элементов и производить анализ такой модели.
Выводы этого анализа будут справедливы для каждого элемента, но ведь система — это не простая сумма элементов, и ее свойства не просто сумма свойств элементов.

Отсюда следует вывод — без учета внешней среды выводы о поведении системы, полученные на основе моделирования, могут быть вполне обоснованными при взгляде изнутри системы. Но не исключена и ситуация, когда эти выводы не имеют никакого отношения к системе — при взгляде на нее со стороны внешнего мира.

Для пояснения вернемся к рассмотренному ранее примеру. В нем почти все элементы были построены на вполне оправданных логических постулатах
(допущениях) типа: если студент Иванов получил оценку “знает” по некоторому предмету, и посетил все занятия по этому предмету, и управление его обучением было на уровне “Да” — то вероятность получения им оценки
“знает” будет выше, чем при отсутствии хотя бы одного из этих условий.

Но как на основании системного анализа такой модели ответить на простейший вопрос; каков вклад (хотя бы по шкале “больше-меньше”) каждой из подсистем в полученные фактические результаты сессии? А если есть числовые описания этих вкладов, то каково доверие к ним? Ведь управляющие воздействия на систему обучения часто можно производить только через семестр или год.

Здесь приходит на помощь особый способ моделирования — метод статистических испытаний (Монте Карло). Суть этого метода проста — имитируется достаточно долгая “жизнь” модели, несколько сотен семестров для нашего примера. При этом моделируются и регистрируются случайно меняющиеся внешние (входные) воздействия на систему. Для каждой из ситуации по уравнениям модели просчитываются выходные (системные) показатели. Затем производится обратный расчет — по заданным выходным показателям производится расчет входных. Конечно, никаких совпадений мы не должны ожидать — каждый элемент системы при входе “Да” вовсе не обязательно будет
“Да” на выходе.

Но существующие современные методы математической статистики позволяют ответить на вопрос — а можно ли и, с каким доверием, использовать данные моделирования. Если эти показатели доверия для нас достаточны, мы можем использовать модель для ответа на поставленные выше вопросы.

7 Процессы принятия управляющих решений

Пусть построена модель системы с соблюдением всех принципов системного подхода, разработаны и “обкатаны” алгоритмы необходимых расчетов, приготовлены варианты управляющих воздействий на систему. Надо понять, что эти воздействия не всегда заключаются в изменениях уровня некоторых входных параметров — это могут быть варианты структурных перестроек системы.

Так вот — все это есть. И что же дальше? Пора и управлять, управлять с единой целью — повышения эффективности функционирования системы
(однокритериальная задача) или с одновременным достижением нескольких целей (многокритериальная задача).

Естественно, мы ставим вопрос: “А что будет, если …?” и ожидаем ответа. Но здесь не следует ожидать чуда, нельзя надеяться на однозначный ответ. Если к примеру, мы интересуемся вопросом — “к чему приведет увеличение на 20% закупок цемента?”, то мы должны не удивляться, получив ответ — “Это приведет к увеличению рентабельности производства кирпича на величину, которая с вероятностью 95% не будет ниже 6% и не будет выше
14%”. И это еще очень содержательный ответ, могут быть и более
“расплывчатые”!

Здесь уместно в последний раз обратиться к примеру с анализом системы обучения и ответить на возможный вопрос — а как же были использованы выводы системного анализа обучения в КГРИ? Ответ одного из соавторов системного анализа, пишущего эти строки, очень краткий — никак.

Можно теперь открыть еще одну (не последнюю) тайну ТССА. Дело в том, что судьбу разработок по управлению большими системами должно решать только
ЛПР, и только этот человек (или коллективный орган) решает вопрос дальнейшей судьбы итогов системного анализа. Важно отметить, что это правило никак не связано ни с “важностью” конкретной отрасли промышленности, торговли или образования, ни с политическими обстоятельствами, ни с государственным строем. Все намного проще — мудрость отцов-основателей ТССА проявилась, прежде всего, в том, что неполнота достоверности выводов системного анализа была ими заранее оговорена.

Поэтому те, кто ведет системный анализ, не должны претендовать на обязательное использование своих разработок; факты отказа от их использования не есть показатель непригодности этих разработок.

С другой стороны, те, кто принимают решения, должны столь же четко понимать, что расплывчатость выводов ТССА есть неизбежность, она может быть обусловлена не промахами анализа, а самой природой или ошибкой постановки задачи, например, попытки управлять такой гигантской системой, как экономика бывшего СССР.

2 Основные понятия математической статистики


1 Случайные события и величины, их основные характеристики

Как уже говорилось, при анализе больших систем наполнителем каналов связи между элементами, подсистемами и системы в целом могут быть:

( продукция, т. е. реальные, физически ощутимые предметы с заранее заданным способом их количественного и качественного описания;

( деньги, с единственным способом описания — суммой;

( информация, в виде сообщений о событиях в системе и значениях описывающих ее поведение величин.

Начнем с того, что обратим внимание на тесную (системную!) связь показателей продукции и денег с информацией об этих показателях. Если рассматривать некоторую физическую величину, скажем — количество проданных за день образцов продукции, то сведения об этой величине после продажи могут быть получены без проблем и достаточно точно или достоверно. Но, уже должно быть ясно, что при системном анализе нас куда больше интересует будущее — а сколько этой продукции будет продано за день? Этот вопрос совсем не праздный — наша цель управлять, а по образному выражению
“управлять — значит предвидеть”.

Итак, без предварительной информации, знаний о количественных показателях в системе нам не обойтись. Величины, которые могут принимать различные значения в зависимости от внешних по отношению к ним условий, принято называть случайными (стохастичными по природе). Так, например: пол встреченного нами человека может быть женским или мужским
(дискретная случайная величина); его рост также может быть различным, но это уже непрерывная случайная величина — с тем или иным количеством возможных значений (в зависимости от единицы измерения).

Для случайных величин (далее — СВ) приходится использовать особые, статистические методы их описания. В зависимости от типа самой СВ — дискретная или непрерывная это делается по разному.

Дискретное описание заключается в том, что указываются все возможные значения данной величины (например - 7 цветов обычного спектра) и для каждой из них указывается вероятность или частота наблюдений именного этого значения при бесконечно большом числе всех наблюдений.

Можно доказать (и это давно сделано), что при увеличении числа наблюдений в определенных условиях за значениями некоторой дискретной величины частота повторений данного значения будет все больше приближаться к некоторому фиксированному значению — которое и есть вероятность этого значения.

К понятию вероятности значения дискретной СВ можно подойти и иным путем — через случайные события. Это наиболее простое понятие в теории вероятностей и математической статистике — событие с вероятностью 0.5 или 50% в 50 случаях из 100 может произойти или не произойти, если же его вероятность более 0.5 - оно чаще происходит, чем не происходит. События с вероятностью 1[pic]называют достоверными, а с вероятностью 0 — невозможными.

Отсюда простое правило: для случайного события X вероятности P(X)
(событие происходит) и P(X) (событие не происходит), в сумме для простого события дают 1.

Если мы наблюдаем за сложным событием — например, выпадением чисел
1..6 на верхней грани игральной кости, то можно считать, что такое событие имеет множество исходов и для каждого из них вероятность составляет 1/6 при симметрии кости.

Если же кость несимметрична, то вероятности отдельных чисел будут разными, но сумма их равна 1.

Стоит только рассматривать итог бросания кости как дискретную случайную величину и мы придем к понятию распределения вероятностей такой величины.

Пусть в результате достаточно большого числа наблюдений за игрой с помощью одной и той же кости мы получили следующие данные:

Таблица 2.1

|Грани |1 |2 |3 |4 |5 |6 |Итого |
|Наблюден|140 |80 |200 |400 |100 |80 | 1000 |
|ия | | | | | | | |

Подобную таблицу наблюдений за СВ часто называют выборочным распределением, а соответствующую ей картинку (диаграмму) — гистограммой.

Рис. 2.1

[pic]

Какую же информацию несет такая табличка или соответствующая ей гистограмма?

Прежде всего, всю — так как иногда и таких данных о значениях случайной величины нет и их приходится либо добывать (эксперимент, моделирование), либо считать исходы такого сложного события равновероятными — по [pic] на любой из исходов.

С другой стороны — очень мало, особенно в цифровом, численном описании
СВ. Как, например, ответить на вопрос: — а сколько в среднем мы выигрываем за одно бросание кости, если выигрыш соответствует выпавшему числу на грани?

Нетрудно сосчитать:

1(0.140+2(0.080+3(0.200+4(0.400+5(0.100+6(0.080= 3.48

То, что мы вычислили, называется средним значением случайной величины, если нас интересует прошлое.

Если же мы поставим вопрос иначе — оценить по этим данным наш будущий выигрыш, то ответ 3.48 принято называть математическим ожиданием случайной величины, которое в общем случае определяется как

Mx = ( Xi ( P(Xi);

{2 - 1}

где P(Xi) — вероятность того, что X примет свое i-е очередное значение.

Таким образом, математическое ожидание случайной величины (как дискретной, так и непрерывной)— это то, к чему стремится ее среднее значение при достаточно большом числе наблюдений.

Обращаясь к нашему примеру, можно заметить, что кость несимметрична, в противном случае вероятности составляли бы по 1/6 каждая, а среднее и математическое ожидание составило бы 3.5.

Поэтому уместен следующий вопрос - а какова степень асимметрии кости - как ее оценить по итогам наблюдений?

Для этой цели используется специальная величина — мера рассеяния — так же как мы "усредняли" допустимые значения СВ, можно усреднить ее отклонения от среднего. Но так как разности (Xi - Mx) всегда будут компенсировать друг друга, то приходится усреднять не отклонения от среднего, а квадраты этих отклонений. Величину

[pic] {2 -
2}

принято называть дисперсией случайной величины X.

Вычисление дисперсии намного упрощается, если воспользоваться выражением

[pic] {2 - 3}

т. е. вычислять дисперсию случайной величины через усредненную разность квадратов ее значений и квадрат ее среднего значения.

Выполним такое вычисление для случайной величины с распределением рис.
1.

Таблица 2.2

|Грани(X) |1 | | | | | |Итого |
| | |2 |3 |4 |5 |6 | |
| X2 | 1 | | 9| | 25| | |
| | |4 | |16 | |36 | |
| Pi | |0.080 | | | 0.100| 0.080| 1.00 |
| |0.140 | |0.200 |0.400 | | | |
|Pi(X2(1000 | 140 | 320 | 1800| 6400 | 2500| 2880 |14040 |

Таким образом, дисперсия составит 14.04 - (3.48)2 = 1.930.

Заметим, что размерность дисперсии не совпадает с размерностью самой
СВ и это не позволяет оценить величину разброса. Поэтому чаще всего вместо дисперсии используется квадратный корень из ее значения — т. н. среднеквадратичное отклонение или отклонение от среднего значения:

[pic]

{2 - 4}

составляющее в нашем случае [pic] = 1.389. Много это или мало?

Сообразим, что в случае наблюдения только одного из возможных значений
(разброса нет) среднее было бы равно именно этому значению, а дисперсия составила бы 0. И наоборот - если бы все значения наблюдались одинаково часто (были бы равновероятными), то среднее значение составило бы
(1+2+3+4+5+6) / 6 = 3.500; усредненный квадрат отклонения — (1 + 4 + 9 +
16 + 25 + 36) / 6 =15.167; а дисперсия 15.167-12.25 = 2.917.

Таким образом, наибольшее рассеяние значений СВ имеет место при ее равновероятном или равномерном распределении.

Отметим, что значения Mx и SX являются размерными и их абсолютные значения мало что говорят. Поэтому часто для грубой оценки "случайности" данной СВ используют т. н. коэффициент вариации или отношение корня квадратного из дисперсии к величине математического ожидания:

Vx = SX/MX .

{2 - 5}

В нашем примере эта величина составит 1.389/3.48=0.399.

Итак, запомним, что неслучайная, детерминированная величина имеет математическое ожидание равное ей самой, нулевую дисперсию и нулевой коэффициент вариации, в то время как равномерно распределенная СВ имеет максимальную дисперсию и максимальный коэффициент вариации.

В ряде ситуаций приходится иметь дело с непрерывно распределенными СВ - весами, расстояниями и т. п. Для них идея оценки среднего значения
(математического ожидания) и меры рассеяния (дисперсии) остается той же, что и для дискретных СВ. Приходится только вместо соответствующих сумм вычислять интегралы. Второе отличие — для непрерывной СВ вопрос о том какова вероятность принятия нею конкретного значения обычно не имеет смысла
— как проверить, что вес товара составляет точно 242 кг - не больше и не меньше?

Для всех СВ — дискретных и непрерывно распределенных, имеет очень большой смысл вопрос о диапазоне значений. В самом деле, иногда знание вероятности того события, что случайная величина не превзойдет заданный рубеж, является единственным способом использовать имеющуюся информацию для системного анализа и системного подхода к управлению. Правило определения вероятности попадания в диапазон очень просто — надо просуммировать вероятности отдельных дискретных значений диапазона или проинтегрировать кривую распределения на этом диапазоне.

2 Взаимосвязи случайных событий

Вернемся теперь к вопросу о случайных событиях. Здесь методически удобнее рассматривать вначале простые события (может произойти или не произойти). Вероятность события X будем обозначать P(X) и иметь ввиду, что вероятность того, что событие не произойдет, составляет

P(X) = 1 - P(X).

{2 - 6}

Самое важное при рассмотрении нескольких случайных событий (тем более в сложных системах с развитыми связями между элементами и подсистемами) — это понимание способа определения вероятности одновременного наступления нескольких событий или, короче, — совмещения событий.

Рассмотрим простейший пример двух событий X и Y, вероятности которых составляют P(X) и P(Y). Здесь важен лишь один вопрос — это события независимые или, наоборот взаимозависимые и тогда какова мера связи между ними? Попробуем разобраться в этом вопросе на основании здравого смысла.

Оценим вначале вероятность одновременного наступления двух независимых событий. Элементарные рассуждения приведут нас к выводу: если события независимы, то при 80%-й вероятности X и 20%-й вероятности Y одновременное их наступление имеет вероятность всего лишь 0.8 ( 0.2 = 0.16 или 16%
.

Итак — вероятность наступления двух независимых событий определяется произведением их вероятностей:

P(XY) = P(X) [pic]P(Y).

{2 - 7}

Перейдем теперь к событиям зависимым. Будем называть вероятность события X при условии, что событие Y уже произошло условной вероятностью
P(X/Y), считая при этом P(X) безусловной или полной вероятностью. Столь же простые рассуждения приводят к так называемой формуле Байеса

P(X/Y)[pic]P(Y) = P(Y/X)[pic]P(X)

{2 - 8}

где слева и справа записано одно и то же — вероятности одновременного наступления двух "зависимых" или коррелированных событий.

Дополним эту формулу общим выражением безусловной вероятности события
X:

P(X) = P(X/Y)[pic]P(Y) + P(X/Y)[pic]P(Y),

{2 - 9}

означающей, что данное событие X может произойти либо после того как событие Y произошло, либо после того, как оно не произошло (Y) — третьего не дано!

Формулы Байеса или т. н. байесовский подход к оценке вероятностных связей для простых событий и дискретно распределенных СВ играют решающую роль в теории принятия решений в условиях неопределенности последствий этих решений или в условиях противо-действия со стороны природы, или других больших систем (конкуренции). В этих условиях ключевой является стратегия управления, основанная на прогнозе т. н. апостериорной (послеопытной) вероятности события

P(X/Y) [pic][pic].
{2 - 10}

Прежде всего, еще раз отметим взаимную связь событий X и Y — если одно не зависит от другого, то данная формула обращается в тривиальное тождество. Кстати, это обстоятельство используется при решении задач оценки тесноты связей — корреляционном анализе. Если же взаимосвязь событий имеет место, то формула Байеса позволяет вести управление путем оценки вероятности достижения некоторой цели на основе наблюдений над процессом функционирования системы — путем перерасчета вариантов стратегий с учетом изменившихся представлений, т. е. новых значений вероятностей.

Дело в том, что любая стратегия управления будет строиться на базе определенных представлений о вероятности событий в системе — и на первых шагах эти вероятности будут взяты "из головы" или в лучшем случае из опыта управления другими системами. Но по мере "жизни" системы нельзя упускать из виду возможность "коррекции" управления - использования всего накапливаемого опыта.

3 Схемы случайных событий и законы распределений случайных величин

Большую роль в теории и практике системного анализа играют некоторые стандартные распределения непрерывных и дискретных СВ.

Эти распределения иногда называют "теоретическими", поскольку для них разработаны методы расчета всех показателей распределения, зафиксированы связи между ними, построены алгоритмы расчета и т. п.

Таких, классических законов распределений достаточно много, хотя
"штат" их за последние 30..50 лет практически не пополнился. Необходимость знакомства с этими распределениями для специалистов вашего профиля объясняется тем, что все они соответствуют некоторым "теоретическим" схемам случайных (большей частью — элементарных) событий.

Как уже отмечалось, наличие больших массивов взаимосвязанных событий и обилие случайных величин в системах экономики приводит к трудностям априорной оценки законов распределений этих событий или величин. Пусть, к примеру, мы каким-то образом установили математическое ожидание спроса некоторого товара. Но этого мало - надо хотя бы оценить степень колебания этого спроса, ответить на вопрос — а какова вероятность того, что он будет лежать в таких-то пределах? Вот если бы установить факт принадлежности данной случайной величины к такому классическому распределению как т. н. нормальное, то тогда задача оценки диапазона, доверия к нему (доверительных интервалов) была бы решена безо всяких проблем.

Доказано, например, что с вероятностью более 95% случайная величина
X с нормальным законом распределения лежит в диапазоне — математическое ожидание Mx плюс/минус три среднеквадратичных отклонения SX.

Так вот — все дело в том к какой из схем случайных событий классического образца ближе всего схема функционирования элементов вашей большой системы. Простой пример - надо оценить показатели оплаты за услуги предоставления времени на междугородние переговоры - например, найти вероятность того, что за 1 минуту осуществляется ровно N переговоров, если заранее известно среднее число поступающих в минуту заказов.
Оказывается, что схема таких случайных событий прекрасно укладывается в т. н. распределение Пуассона для дискретных случайных величин. Этому распределению подчинены почти все дискретные величины, связанные с так называемыми "редкими" событиями.

Далеко не всегда математическая оболочка классического закона распределения достаточно проста. Напротив — чаще всего это сложный математический аппарат со своими, специфическими приемами. Но дело не в этом, тем более при "повальной" компьютеризации всех областей деятельности человека. Разумеется, нет необходимости знать в деталях свойства всех или хоть какой-то части классических распределений - достаточно иметь в виду саму возможность воспользоваться ими.

Из личного опыта - очень давно, в до_компьютерную эру автору этих строк удалось предложить метод оценки степени надежности энергоснабжения, найти по сути дела игровой метод принятия решения о необходимости затрат на резервирование линий электропередач в условиях неопределенности — игры с природой.

Таким образом, при системном подходе к решению той или иной задачи управления (в том числе и экономического) надо очень взвешено отнестись к выбору элементов системы или отдельных системных операций. Не всегда
"укрупнение показателей" обеспечит логическую стройность структуры системы
— надо понимать, что заметить близость схемы событий в данной системе к схеме классической чаще всего удается на самом "элементарном" уровне системного анализа.

Завершая вопрос о распределении случайных величин обратим внимание на еще одно важное обстоятельство: даже если нам достаточно одного единственного показателя — математического ожидания данной случайной величины, то и в этом случае возникает вопрос о надежности данных об этом показателя.

В самом деле, пусть нам дано т. н. выборочное распределение случайной величины X (например — ежедневной выручки в $) в виде 100 наблюдений за этой величиной. Пусть мы рассчитали среднее Mx и оно составило $125 при колебаниях от $50 до $200. Попутно мы нашли SX, равное $5. Теперь уместен вопрос: а насколько правдоподобным будет утверждение о том, что в последующие дни выручка составит точно $125? Или будет лежать в интервале $120..$130? Или окажется более некоторой суммы — например,
$90?

Страницы: 1, 2, 3, 4, 5


ИНТЕРЕСНОЕ



© 2009 Все права защищены.