реферат, рефераты скачать
 

Технологический процесс механической обработки детали Траверса, проект специального станочного приспособления для фрезерования паза детали, проект специального станочного приспособления для фрезерования контура детали, ...


p> [pic].

3. Описание технологической операции

На данной операции производится фрезерование пазов детали. Обработка ведется на координатно-сверлильном фрезерно-расточном одностоечном станке
[pic], который предназначен для особо точной обработки широкого диапазона деталей.

В качестве режущего инструмента принимаем фрезу концевую быстрорежущую с коническим хвостовиком ([pic]). Параметры фрезы Ш[pic], длина рабочей части [pic], общая длина [pic].

Ширину пазов проверяем с помощью калибра.

4. Общие требования к приспособлению

Механизм зажима представляет Г-образный прихват с гидравлическим приводом. Он допускает отвод костыля на значительную величину. Спиральный паз обеспечивает автоматический поворот костыля. В качестве транспортировочных устройств используются рым-болты.

2.1.2. Расчет точности приспособления

При фрезеровании пазов детали требуется обеспечить отклонение [pic] от перпендикулярности верхней поверхности детали относительно опорной поверхности приспособления. Для выполнения этого условия необходимо рассчитать с какой точностью должна быть выполнена при сборке приспособления параллельность поверхности приспособления относительно стола станка, т.е. с каким допуском должен быть выполнен параметр [pic] (рис. 2).

Расчет ведем по методике изложенной в [5, 44].

Определяем необходимую точность приспособления по параметру [pic]:

1. Определяем погрешность базирования [pic].

2. Погрешность закрепления [pic] [2, 75].

3. Погрешность установки фактическая [pic].

4. Суммарная погрешность обработки:

[pic] [7, 8],

[pic].

5. Допустимая погрешность установки

[pic].

Т.к., [pic], то предлагаемая схема базирования и конструктивная схема приспособления приемлемы.

6. Суммарная погрешность приспособления

[pic]

7. Погрешность собранного приспособления

[pic], где [pic] - погрешность установки приспособления на станке определяют по формуле исходя из конструктивной схемы (рис. 2):

[pic], где [pic] - длина обрабатываемой заготовки, [pic];

[pic] - максимальный зазор между направляющей шпонкой приспособления и пазом стола станка; [pic] для посадки [pic];

[pic] - расстояние между шпонками; где [pic];

[pic].

[pic] - погрешность закрепления равна нулю, т.к. установка заготовки производится без зазоров;

[pic] - погрешность настройки равна [pic] (для мелкосерийного производства).

[pic].

На чертеже общего вида приспособления должно быть поставлено значение параметра [pic].

8. Запас точности [pic].

2.1.3. Расчет усилия зажима заготовки

При расчете усилия зажима рассматриваются два случая:

1. Смещение заготовки от сил резания предотвращается силами трения, возникающими в местах контакта заготовки с установочными элементами;

2. Отрыв заготовки под действием силы резания [pic] или момента резания [pic] предупреждается силой зажима [pic], равномерно распределенной на два прихвата. Рассчитав для обоих случаев значение силы [pic], выбирают наибольшее и принимают его за расчетное.

Произведем расчет силы зажима для первого случая. Расчет ведем по методике изложенной в [7, 22].

Рассчитаем коэффициент запаса [pic]:

[pic] [7, 23], где [pic] - учитывает наличие случайных неровностей на заготовке;

[pic] - учитывает увеличение силы резания в результате затупления режущего инструмента;

[pic] - учитывает увеличение силы резания при прерывистой обработке;

[pic] - учитывает изменение зажимного усилия (механизированный привод);

[pic] - учитывает эргономику ручных зажимных устройств (при удобном зажиме);

[pic] - учитывает наличие момента, стремящегося повернуть заготовку на опорах;

[pic] - гарантированный коэффициент запаса для всех случаев обработки.

[pic].

Коэффициент трения [pic] [7, 24], т.к. заготовка контактирует с опорами и зажимными элементами приспособления необработанными поверхностями.

Определяем главную составляющую силы резания:

[pic]

[pic].

Тогда усилие зажима равно:

[pic],

[pic]; [pic];

[pic];

[pic].

За расчетное значение принимаем [pic].

Определяем диаметр гидроцилиндра:

[pic], где [pic] - давление в гидросистеме, равное [pic],

[pic] - коэффициент полезного действия ([pic]).

[pic].

Принимаем по [pic] диаметр гидроцилиндра равным [pic], ход поршня
[pic]. Гидроцилидр двойного действия: толкающая сила [pic], тянущая [pic].

2.2. Проектирование специального приспособления на операцию фрезерования контура детали «Траверса»


2.2.1. Техническое задание на специальное станочное приспособление

1. Принципиальная схема базирования заготовки

Рис. Схема базирования заготовки.

В качестве опорной поверхности используется боковая поверхность, которая лишает заготовку 3-х степеней свободы (опорные точки 1, 2 и 3 на рис ). Для лишения оставшихся трех применяются базирование по отверстиям на пальцы установочные (опорные точки 4, 5 и 6).

2. Описание технологической операции.

На данной операции производится фрезерование контура детали. Обработка ведется на С2440СФ4 - координатно-сверлильном фрезерно-расточном станке. В качестве режущего инструмента принимаем фрезу концевую, твердосплавную с коническим хвостовиком по ОСТ 2И63-2-75 (32, l =90мм, L=195мм.

3. Принцип работы приспособления.

Деталь устанавливается на плиту и базируется с помощью установочных пальцев, представляющих собой шток гидроцилиндра. Зажим производится с применением быстросъемных шайб.

2.2.2. Расчет точности приспособления

При фрезеровании контура детали требуется обеспечить отклонение [pic] от параллельности поверхности детали относительно корпуса приспособления.
Для выполнения этого условия необходимо рассчитать, с какой точностью должна быть выдержана при сборке приспособления параллельность поверхности каркаса приспособления относительно стола станка, то есть с каким допуском должен быть выполнен параметр [pic] (см. рис. ).

Расчет ведем методике изложенной [7, 16].

Определяем необходимую точность приспособления по параметру [pic].

1. Погрешность базирования [pic].

2. Погрешность закрепления [pic] [2, 75].

3. Погрешность установки фактическая

[pic].

4. Суммарная погрешность обработки

[pic] [1, 8].

[pic], где

[pic] - коэффициент, определяющийся порядком точности обработки (для черновой обработки до 9 квалитета [pic]; для чистовой - [pic]).

5. Допустимая погрешность установки

[pic]; так как [pic], предлагаемая схема базирования и конструктивная схема приспособления приемлемы.

6. Суммарная погрешность приспособления

[pic].

7. Погрешность собранного приспособления

[pic].

На чертеже общего вида приспособления (см. рис. ) должно быть проставлено значение параметра [pic].

2.2.3. Силовой расчет приспособления

При установке заготовки на плоскость и два пальца, один из которых срезан; пальцы должны быть полностью разгружены от действия сил резания
[pic], [pic], [pic].

Возможны два случая:

1. Смещение заготовки от сил и предотвращается силами трения, возникающими в местах контакта заготовки с установочными элементами
(прихватами)

2. Отрыв заготовки под действием силы резания [pic] или момента
(инерции) резания [pic] предупреждается силой зажима Q, равномерно распределенной на два прихвата.

Рассчитав для обоих случаев значение силы Q, выбирают наибольшее и принимают его за расчетное.

Произведем расчет силы зажима для первого случая.

Рассчитаем коэффициент запаса К [9, 22]:

[pic], где
[pic] - учитывает наличие случайных неровностей на заготовке;
[pic] - учитывает увеличение силы резания в результате затупления режущего инструмента [9, 23];
[pic] - учитывает увеличение силы резания при прерывистой обработке;
[pic] - учитывает изменение зажимного усилия (механизированный привод);
[pic] - учитывает эргономику ручных зажимных устройств (при удобном зажиме);
[pic]- учитывает наличие момента, стремящегося повернуть заготовку на опорах (на штыри);
[pic] - гарантированный коэффициент запаса для всех случаев обработки;

[pic].

[pic] [9, 24] - так как заготовка контактирует с опорами и ЗУ приспособления, обработанными поворотами.

[pic][pic].

[pic].

[pic].

[pic].

[pic]; [pic].

[pic].

Принимаем по ГОСТ 19899-74 диаметр гидроцилиндр равным 63 мм., ход поршня 16 мм. Гидроцилиндр двойного действия: толкающая сила [pic], тянущая
[pic].

2.3. Проектирование специального станочного приспособоения на операцию сверления отверстий в детали «Траверса»

2.3.1. Техническое задание на приспособление

1. Принципиальная схема базирования заготовки

Рис. Схема базирования заготовки.

В качестве опорной поверхности используется боковая поверхность, которая лишает заготовку 3-х степеней свободы (опорные точки 1, 2 и 3 на рис ). Для лишения оставшихся трех применяется базирование в призме : одна из призм неподвижная лишает двух степеней свободы (опорные точки 4,
5 ), другая - неподвижная лишает одну степень свободу.

2. Описание технологической операции.

На данной операции производится сверление, зенкерование, развертывание отверстий в детали. Обработка ведется на С2440СФ4 - координатно-сверлильном фрезерно-расточном станке.

В качестве режущего инструмента принимаем сверло твердосплавное с коническим хвостовиком по ГОСТ 22735-77 (30, (12,(9,8. Зенкер, оснащенный твердосплавными пластинами, для обработки деталей из коррозионно-стойких и жаропрочных сталей и сплавов по ГОСТ 21540-76 из сплава ВК8 по ГОСТ 3882-74
(32,(13,8,(9,8. Развертка машинная, оснащенная твердосплавными пластинами, для обработки деталей из коррозионно-стойких и жаропрочных сталей и сплавов с коническим хвостовиком по ГОСТ 21525-76 (35,(14,(10.

3. Принцип работы приспособления.

Деталь устанавливается на плоские опорные постины, закрепленные на плите и базируется с помощью призмы, которая двигается по направляющим.
Перемещение призмы происходит за счет ее соединения со штоком гидроцилиндра, с помощью которого производится зажим заготовки.

2.3.2. Расчет точности

При сверлении отверстий в детали требуется обеспечить отклонение [pic] от перпендикулярности поверхности отверстий относительно поверхности плиты приспособления. Для выполнения этого условия необходимо рассчитать с какой точностью должна быть выполнена при сборке приспособления параллельность поверхности приспособления относительно стола станка, т.е. с каким допуском должен быть выполнен параметр [pic] (рис. ).

Расчет ведем по методике изложенной в [5, 44].

Определяем необходимую точность приспособления по параметру [pic]:

1. Определяем погрешность базирования [pic].

2. Погрешность закрепления [pic] [2, 75].

3. Погрешность установки фактическая [pic].

4. Суммарная погрешность обработки:

[pic] [7, 8],

[pic].

5. Допустимая погрешность установки

[pic].

Т.к., [pic], то предлагаемая схема базирования и конструктивная схема приспособления приемлемы.

6. Суммарная погрешность приспособления

[pic]

7. Погрешность собранного приспособления

[pic], где [pic] - погрешность установки приспособления на станке определяют по формуле исходя из конструктивной схемы (рис. 2):

[pic], где [pic] - длина обрабатываемой заготовки, [pic];

[pic] - максимальный зазор между направляющей шпонкой приспособления и пазом стола станка; [pic] для посадки [pic];

[pic] - расстояние между шпонками; где [pic];

[pic].

[pic] - погрешность закрепления равна нулю, т.к. установка заготовки производится без зазоров;

[pic] - погрешность настройки равна нулю.

[pic].

На чертеже общего вида приспособления должно быть поставлено значение параметра [pic].

8. Запас точности [pic].

2.3.3. Расчет усилия зажима заготовки

При расчете усилия зажима рассматриваются два случая:

1. Смещение заготовки от сил резания предотвращается силами трения, возникающими в местах контакта заготовки с установочными элементами;

2. Отрыв заготовки под действием силы резания [pic] или момента резания [pic] предупреждается силой зажима [pic]. Рассчитав для обоих случаев значение силы [pic], выбирают наибольшее и принимают его за расчетное.

Произведем расчет силы зажима для первого случая. Расчет ведем по методике изложенной в [14, 22].

Рассчитаем коэффициент запаса [pic]:

[pic] [14, 23], где [pic] - учитывает наличие случайных неровностей на заготовке;

[pic] - учитывает увеличение силы резания в результате затупления режущего инструмента;

[pic] - учитывает увеличение силы резания при прерывистой обработке;

[pic] - учитывает изменение зажимного усилия (механизированный привод);

[pic] - учитывает эргономику ручных зажимных устройств (при удобном зажиме);

[pic] - учитывает наличие момента, стремящегося повернуть заготовку на опорах;

[pic] - гарантированный коэффициент запаса для всех случаев обработки.

[pic].

Коэффициент трения [pic] [14, 24], т.к. заготовка контактирует с опорами и зажимными элементами приспособления необработанными поверхностями.

Определяем главную составляющую силы резания:

[pic]

Тогда усилие зажима равно:

[pic],

[pic];

[pic].

За расчетное значение принимаем [pic].

Определяем диаметр гидроцилиндра:

[pic], где [pic] - давление в гидросистеме, равное [pic],

[pic] - коэффициент полезного действия ([pic]).

[pic].

Принимаем по [pic] диаметр гидроцилиндра равным [pic], ход поршня
[pic]. Гидроцилидр двойного действия: толкающая сила [pic], тянущая [pic].

2.4. Проектирование специального режущего и мерительного инструмента


2.4.1. Техническое задание на проектирование металлорежущего инструмента

Для получения поверхности детали под втулку проектируется специальный металлорежущий инструмент – зенковка (цековка) с напаянными твердосплавными пластинами и с направляющим элементом. Отличительной особенностью такой зенковки является то, что она обеспечивает перпендикулярность оси отверстия внутренней поверхности паза, а также обеспечивает одновременное снятие фаски и более высокую шероховатость поверхности.

Альтернативным металлорежущим инструментом может стать фреза торцевая.
Но для реализации такого варианта необходимо предусмотреть в заготовке специальные наплывы, которые изменят конструкцию штамповочной пресс-формы, также увеличится масса заготовки, снизится коэффициент использования материала, что в свою очередь, приведет к увеличению стоимости заготовки, а следовательно, и к возрастанию стоимости детали.

2.4.2. Выборка конструктивных параметров инструмента

1. Определяем режим резания по нормативам:

- глубина резания [pic];

- находим подачу на оборот [pic];

- скорость главного движения резания [pic], где [pic] - диаметр режущего инструмента, равный [pic];

[pic] - период стойкости инструмента, равный [pic];

[pic] - глубина резания, [pic];

[pic]- подача на оборот, [pic];

[pic];

- крутящий момент и осевая сила

[pic], где [pic]; [pic]; [pic] [7, 288],

[pic];

[pic];

[pic], где [pic]; [pic] [7, 290].

[pic],

[pic].

2. Определяем номер хвостовика конуса Морзе:

Осевую составляющую силы резания можно разложить на две силы:

1. [pic] - действующую нормально к образующей конуса [pic], где [pic]

- угол конусности хвостовика.

2. Силу [pic] - действующую в радиальном направлении и уравновешивающую реакцию на противоположной точке поверхности конуса.

Сила [pic] создает касательную составляющую [pic] силы резания; с учетом коэффициента трения поверхности конуса о стенки втулки [pic]:

[pic].

Момент трения между хвостовиком и втулкой:

[pic].

Приравниваем момент трения к максимальному моменту сил сопротивления резанию, т.е. к моменту, создающемуся при работе затупившимся инструментом, который увеличивается до трех раз по сравнению с моментом, принятым для нормальной работы инструмента.

Следовательно,

[pic].

Средний диаметр конуса хвостовика:

[pic], или

[pic], где [pic] - момент сопротивления сил резанию,

[pic] - осевая составляющая силы резания,

[pic] - коэффициент трения стали по стали,

[pic] - для большинства конусов Морзе равен приблизительно [pic],
[pic];

[pic] - отклонение угла конуса;

[pic].

По [pic] выбираем ближний ближайший больший конус, т.е. конус Морзе
№3, со следующими основными конструктивными параметрами: [pic]; [pic];
[pic]; [pic]; [pic]; [pic]; [pic]; [pic]; [pic]; [pic]; [pic].

3. Конструктивные элементы зенковки принимаем по [pic]: длина рабочей части [pic]; длина оправки [pic]; общая длина инструмента [pic]; длина инструмента без направляющего элемента [pic].

4. Твердый сплав пластины для обработки титанового сплава [pic] принимаем [pic], форму [pic] по [pic] или форму [pic] по [pic]. В качестве припоя принимаем латунь [pic]. Корпус зенковки из [pic] по

[pic].

5. Технические требования для зенковки, оснащенной пластинами из твердого сплава, принимаем по [pic].

2.4.3. Расчет металлорежущего инструмента на прочность и жесткость

Расчет инструмента на прочность и жесткость производится путем сравнения трех параметров: [pic], [pic], [pic].

Максимальная нагрузка допускаемая, прочностью инструмента при известных размерах корпуса цековки:

- для круглого сечения

[pic], где [pic] - предел прочности при изгибе для конструкционной стали равен [pic];

[pic] - расстояние от вершины инструмента до рассматриваемого опасного сечения, [pic].

[pic].

Максимальная нагрузка, допускаемая жесткостью инструмента, определяется с учетом допустимой стрелы прогиба:

[pic], где [pic] - допускаемая стрела прогиба равная [pic];

[pic] - модуль упругости;

[pic] - момент инерции сечения корпуса (для круглого сечения [pic]).

[pic][pic],

[pic].

Таким образом, выполняется основное условие обеспечения прочности и жесткости металлорежущего инструмента, а именно:

[pic]

[pic].

2.4.4. Проектирование мерительного инструмента

Исходными данными для проектирования специального мерительного инструмента являются:

- размер паза детали, равный [pic];

- поле допуска на размер [pic].

По [pic] находим предельные отклонения изделия [pic]; [pic].
Наибольший и наименьший предельные размеры:

[pic]; [pic].

По табл. 2 [pic] для квалитета 9 и интервалов размера находим данные для расчета размеров калибров, [pic]: [pic]; [pic]; [pic].

Наибольший размер проходного нового калибра:

[pic], где [pic] - допуск на изготовление калибра, [pic];

[pic] - отклонение середины поля допуска, [pic].

Размер калибра [pic], проставляемый на чертеже [pic]. Исполнительные размеры: наибольший [pic], наименьший [pic].

Наименьший размер проходного калибра:

[pic], где [pic] - выход за границу поля допуска при износе проходного калибра.

Если калибр имеет указанный размер, то его нужно изъять из эксплуатации.

Наибольший размер непроходного нового калибра:

[pic].

Размер калибра [pic], проставляемый на чертеже [pic].

Исполнительные размеры: наибольший [pic], наименьший [pic].

Расчет произведен по методике изложенной в [7, 208].

3. ЭКОНОМИЧЕСКАЯ ЧАСТЬ

3.1. Технико-экономическое обоснование выбора конструкции приспособления на операцию фрезерования паза детали

1. Стоимость приспособления: [pic], где [pic] - стоимость одной условной детали приспособления;

[pic] - коэффициент сложности приспособления [ ];

[pic] - количество деталей в приспособлении.

[pic];

[pic].

2. Расходы на эксплуатацию приспособления

[pic], где [pic] - коэффициент затрат на проектирование оснастки ([pic]);

[pic] - срок службы приспособления (2 года);

[pic] - коэффициент, учитывающий расходы на ремонт и эксплуатацию
([pic]).

[pic],

[pic] или

[pic], где [pic] - годовая программа выпуска, [pic];

[pic] - срок эксплуатации приспособления (2 года);

[pic] - процент расходов на ремонт и эксплуатацию приспособления.

[pic].

3. Экономия от внедрения приспособления:

[pic], где [pic] - стоимость одной минуты работы станка, [pic];

[pic], где [pic]; [pic]; [pic] [ ];

[pic].

Т.к. экономия от внедрения приспособления перекрывает расходы, то данное приспособление экономически выгодно и его можно применить на производстве.

Методика расчета проведена по [9, 18].

3.2. Технико-экономическое обоснование приспособления на операцию фрезерования контура детали

Стоимость приспособления:

[pic], где

[pic] - стоимость одной условной детали приспособления;

[pic] - коэффициент сложности приспособления [6, 225];

[pic] - количество деталей в приспособлении.

[pic].

[pic].

Расходы на эксплуатацию приспособления:

[pic], где

[pic] – годовая программа выпуска, [pic];

[pic] – срок эксплуатации приспособления ([pic]);

[pic] – процент расходов на ремонт и обслуживание приспособлений (20%-
30%).

[pic].

Экономия от внедрения приспособления:

[pic], где

[pic] - стоимость одной минуты работы станка, руб., мин.

[pic], где

[pic] [9, 223]

[pic].

Вывод: так как условие [pic] ([pic]), то данное приспособление экономически выгодно и его можно применить на производстве (методика расчета произведена по [9, 18]).

3.3. Технико-экономическое обоснование выбора конструкции приспособления на операцию сверления

Целесообразность применение приспособления должна быть экономически оправдана. Расчеты экономической эффективности основываются на сопоставлении затрат и экономии. Применение приспособления считается экономически выгодным, если годовая экономия больше, чем годовые затраты, связанные с ним.

Определим ожидаемую экономию:

[pic] где [pic] - штучно-калькуляционное время при первом и втором варианте использования конструкции приспособления.

[pic]- себестоимость одной станко-минуты:

[pic] [14,222] где [pic]- переменные затраты, пропорциональные изменению времени обработки[14,223] .

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.