реферат, рефераты скачать
 

Электрическая сеть района системы 110 кВ


1,539

22,540

16,639

0,05

0,375

22,590

17,014

 


Составляем Г-образную схему замещения трансформатора на которой в верхней строке показываем мощности соответствующие минимальному режиму, а в нижней строке показываем мощности соответствующие максимальному режиму работы.




4. РАЗРАБОТКА ВАРИАНТОВ СХЕМ ЭЛЕКТРИЧЕСКОЙ СЕТИ РАЙОНА  СИСТЕМЫ


Предлагаемые варианты схем электрической сети должны в одинаковой степени отвечать требованиям надежности электроснабжения и в тоже время по возможности меньше требовать для своего исполнения коммутационной аппаратуры и протяженности линий. Разработка вариантов ведется комплексно, то есть схема сети намечается с учетом схем коммутации подстанций, числа присоединений, взаимного географического положения подстанций, баланса мощностей района.

По заданным координатам подстанций в масштабе М1:106 (в 1 мм – 1 км) найдем место расположения подстанций и наметим два различных варианта схемы электрической сети.

В первом варианте примем разомкнутую сеть. При питании подстанций с ответственными потребителями от разомкнутой сети, необходимо питать их от двух линий. Линия С-3 и  одноцепная, так как связь с другим районом обеспечивает надежность питания подстанции.

Во втором варианте примем простую замкнутую сеть с одноцепными ЛЭП.


     ВАРИАНТ 1.                                  ВАРИАНТ 2.

                                               








 



          Рис.4.1                                            рис. 4.2



5. ЭЛЕКТРИЧЕСКИЙ РАСЧЕТ СЕТИ ДВУХ ВАРИАНТОВ В МАКСИМАЛЬНОМ РЕЖИМЕ ДО ОПРЕДЕЛЕНИЯ ПОТЕРЬ И УРОВНЕЙ НАПРЯЖЕНИЯ


5.1. Расчет первого варианта.

5.1.1. Расчет линии 2-1.

Линия двухцепная, длиной 18 км. Uном=110 кВ.

Мощность в конце линии 2-1 равна Sпр.пс1 плюс мощность, уходящая в другой район системы. S2=Sпр.пс1+S

S2 = 12,085+j7,98+10+j4= 22,085+j11,98== 25,125 МВА

Определяем ток линии

Так как линия двухцепная, то ток нормального режима в одной цепи равен

Iнорм.р = 131,8/2 = 65,9 А

Определяем расчетный ток при выборе сечений проводов методом экономических интервалов

Iр = Iнорм.р×ai×aT = 65,9×1.05×1 = 69,2 А

ai – коэффициент, учитывающий изменение нагрузки по годам, который для линий 110-220 кВ можно принять равным 1,05; что соответствует математическому ожиданию этого коэффициента в зоне наиболее часто встречающихся темпов роста нагрузки.

 aT – коэффициент, зависящий от времени использования максимальной нагрузки, номинального напряжения линии и коэффициента участия в максимуме нагрузки.

Принимаем железобетонные опоры типа ПБ-110-4, и по [5.с.280.] для III района по гололеду выбираем сечения проводов в каждой цепи 95 мм2 с предельной экономической нагрузкой на одну цепь 80 А.

Принимаем провод АС-95/16 с допустимым током I0ДОП=330 А, что больше тока нормального режима работы и тока общей нагрузки I=131,8 А, который будет проходить в одной цепи, при отключении другой. Ro=0.299 Ом/км, d=13,5 мм. Конструктивная схема принятой опоры для расчета среднего геометрического расстояния между фазами представлена на рисунке 5.1.


Определяем индуктивное сопротивление на один километр

.            [2.с.70.ф.3-6]


                                2 м   

                1

Д1-2 = Д2-3 == 4,27 м

Д3-1 = 4+4 = 8 м

Дсрюг= =

      = 5,26 м = 5260 мм

 

[2, с.69.ф.3-5]

 
 




                   3,5 м            4 м

     2


                                    4 м 


             3



         

                  рис.5.1.

Определяем емкостную проводимость линии на 1 км.

          [2.с.213.ф.10-5]

Определяем эквивалентное сопротивление линии

R = ×Ro×l = ×0,299×18 = 2,691 Ом           [2.с.67.ф.3-1]

X = ×Xo×l = ×0,432×18 = 3,889 Ом           [2.с.72.ф.3-9]

где n число цепей в линии.

Зарядная мощность на одном конце ЛЭП

      [2.с.215.ф.10-8б]

Составляем «П»-образную схему замещения


Sкон = 22,085+j11,98-j0,571 = (22,085+j11,409) МВА

Sнач = 22,085+j11,409+0,14+j0,203 = (22,225+j11,612) МВА

S1-2 = 22,225+j11,612-j0,571 = (22,225+j11,041) МВА


5.1.2. Расчет линии С-2.

Линия двухцепная, длиной 18 км. Uном=110 кВ.

Мощность в конце линии S2=Sпр.пс2+S2-1

S2 =22,225+j11,041+20,135+j13,325=42,36+j24,366== 48,868 МВА

Определяем ток линии

Так как линия двухцепная, то ток нормального режима в одной цепи равен

Iнорм.р = 256,5/2 = 128,2 А

Определяем расчетный ток при выборе сечений проводов методом экономических интервалов

Iр = I×ai×aT = 128,2×1.05×1 = 134,66  А

Принимаем железобетонные опоры типа ПБ-110-4, и для III района по гололеду выбираем сечения проводов в каждой цепи 120 мм2 с предельной экономической нагрузкой на 1 цепь 150А.

Принимаем провод АС-150/24 с допустимым током I0ДОП=445 А, что больше тока нормального режима работы и тока общей нагрузки I=256,5 А, который будет проходить в одной цепи, при отключении другой. Ro=0.194 Ом/км, d=17,1 мм.


Определяем индуктивное сопротивление на 1 км.

Определяем емкостную проводимость линии на 1 км.

Определяем эквивалентное сопротивление линии

R = ×Ro×l = ×18×0,194 = 1,746 Ом

X = ×Xo×l = ×18×0,417 = 3,756 Ом

где n число цепей в линии.

Зарядная мощность на одном конце ЛЭП



Составляем «П»-образную схему замещения


Sкон =42,36+j24,366-j0,592=(42,36+j23,774) МВА

Sнач=42,36+j23,774+0,345+j0,741 =(42,705+j24,515) МВА

SС-3=42,705+j24,515-j0,592=(42,705+j23,923) МВА


5.1.3. Расчет линии 3-4.

Линия двухцепная, длиной 25 км. Uном=110 кВ.

Мощность в конце линии S2=Sпр.пс4

S2 = 32,281+j21,426 = = 38,745 МВА

Определяем ток линии

Так как линия двухцепная, то ток нормального режима в одной цепи равен

Iнорм.р = 203,4/2 = 101,7 А

Определяем расчетный ток при выборе сечений проводов методом экономических интервалов

Iр = I×ai×aT = 101,7×1.05×1 = 106,8  А

Принимаем железобетонные опоры типа ПБ-110-4, и для III района по гололеду выбираем сечения проводов в каждой цепи 120 мм2 с предельной экономической нагрузкой на 1 цепь 150А.

Принимаем провод АС-95/16 с допустимым током I0ДОП=330А, что больше тока нормального режима работы и тока общей нагрузки I=101,7 А, который будет проходить в одной цепи, при отключении другой. Ro=0.299 Ом/км, d=13,5 мм.


Определяем индуктивное сопротивление на 1 км.

Определяем емкостную проводимость линии на 1 км.

Определяем эквивалентное сопротивление линии

R = ×Ro×l = ×25×0,299 = 3,737 Ом

X = ×Xo×l = ×25×0,432 = 5,401 Ом

где n число цепей в линии.

Зарядная мощность на одном конце ЛЭП


Составляем «П»-образную схему замещения


Sкон =32,281+j21,426-j0,793=(32,281+j20,633) МВА

Sнач=32,281+j20,633+0,464+j0,67 =(32,745+j21,303) МВА

SС-3=32,745+j21,303-j0,793=(32,745+j20,51) МВА


5.1.4. Расчет линии С-3.

Линия одноцепная, длина 20 км. Uном=110 кВ.

Мощность в конце линии С-3 равна S2=Sпр.пс3+S3-4 за вычетом мощности, приходящей из другого района системы.

S2=32,745+j20,51+57,702+j38,803-42-j20=(48,447+j39,313) МВА

где I - ток линии, а Iнорм.р –ток нормального режима.

Расчетный ток при выборе сечений проводов методом экономических интервалов:

Ip = aiaтIнорм = 1,05×1×327,5 = 343 А

Хотя линия и одноцепная, но ее нужно проверить по нагреву не только по току нормального режима, но и аварийному, так как отключение линии связи с другим районом увеличит ее загрузку до  S2=Sпр.пс3+S3-4

.

Принимаем железобетонные опоры типа ПБ-110-3, и для III района по гололеду выбираем сечения проводов в каждой цепи 240 мм2 с предельной экономической нагрузкой на 1 цепь 370 А.

Принимаем провод АС-240/39 с допустимым током I0ДОП=610А, что больше тока нормального режима работы и аварийного тока I=567,7А Ro=0.122 Ом/км, d=21,6 мм. Конструктивная схема принятой опоры [3.с.394.] для расчета среднего геометрического расстояния между фазами представлена на рисунке 5.5.

                     2 м   

                             1                                                         

        



                                     4 м

                    3,5 м

                                       2

   3


 


         


         рис.5.5.

                                                                         [2.с.69.ф.3-5]

Определяем индуктивное сопротивление на один километр

.           

Определяем емкостную проводимость линии на 1 км.

         

Определяем эквивалентное сопротивление линии

R = Ro×l = 0,122×20 = 2,44 Ом                        

X = Xo×l = 0,401×20 = 8,016 Ом                      

Зарядная мощность на одном конце ЛЭП

     

Составляем «П»-образную схему замещения


Sкон = 48,447+j39,313-j0,343 = (48,447+j38,97) МВА

Sнач = 48,447+j38,97+0,785+j2,579 = (49,232+j41,549) МВА

S1-2 = 49,232+j41,549-j0,343 = (49,232+j41,206) МВА


5.2. Расчет второго варианта.

5.2.1. Нагрузки узлов в максимальном режиме и расчет потокораспределения в нормальном режиме работы.

ПС1: Sу1 = SПР1+ Sух = 12,085+j7,98+10+j4 = 22,085+j11,98 МВА

ПС2: Sу2 = Sпр2 = 20,135+j13,325 МВА

ПС3: Sу3 = Sпр3- Sприх = 57,702+j38,803-42-j20 = 15,702+j18,803 МВА

ПС4: Sу4 = Sпр4 = 32,281+j21,426 МВА

ПС «С»-балансирующий узел, по которому и «разрежем» замкнутую сеть, превратив её в линию с двухсторонним питанием.


  47,708+j31,333  27,573+j18,008    5,488+j6,028        26,793+j15,398  42,495+j34,201

 

С      18 км           2     18 км         1      30 км           4     25 км          3     20 км.     С’



          20,135+j13,325       22,085+j11,98           32,281+j21,426         15,702+j18,803

рис.5.7

Находим поток на головном участке, подставляя в формулу все нагрузки с одинаковым знаком, так как в точках 1,2,3,4 только потребители.



Остальные потоки мощности, в том числе и SС-3 найдем по 1 закону Кирхгофа непосредственно по рис.5.7.

Сделаем проверку правильности расчетов повторно определив SС-3, как поток головного участка.


Результат совпал с предыдущим значением, значит расчет потокораспределения был правильным 

5.2.2. Расчет потокораспределения в аварийных режимах и выявление наиболее тяжелого режима.

   отключена         20,135+j13,325       42,22+j25,305   74,501+j46,731   90,203+j65,534                                                          

  

C                    2                1                  4                3           C’

          20,135+j13,325      22,085+j11,98        32,281+j21,426      15,702+j18,803


    20,135+j13,325         отключена       22,085+j11,98       54,366+j33,406  70,068+j52,209




C                    2                1                   4              3            C’

          20,135+j13,325     22,085+j11,98          32,281+j21,426     15,702+j18,803


  42,22+j25,305       22,085+j11,98      отключена        32,281+j21,426    47,983+j40,229




C                    2                1                  4                3           C’

          20,135+j13,325     22,085+j11,98         32,281+j21,426      15,702+j18,803


  74,501+j46,731     54,366+j33,406   32,281+j21,426        отключена       15,702+j18,803

 

C                    2                1                  4                3           C’


          20,135+j13,325      22,085+j11,98        32,281+j21,426       15,702+j18,803



    90,203+j65,534    70,068+j52,209   47,983+j40,229    15,702+j18,803       отключена

 


С                  1                2                  4                3         С’


           20,135+j13,325       22,085+j11,98        32,281+j21,426      15,702+j18,803

рис.5.8

Сравнивая потоки мощности по вертикали против каждой линии находим наибольшие аварийные мощности для линий:


5.2.3. Выбор сечений проводов линий, проверка их по нагреву в нормальном и наиболее тяжелом для данной линии аварийном режимах.

Проделаем это в табличной форме.

Таблица 5.1

ЛЭП

Нормальный режим работы

Наиб. Авар.

Ip

Эконом. Сечение

Пред. эконом нагрузка

Принятое сечение

Io доп (проверка по нагреву)

P

Q

S

I

Sab

Iab

-

МВА

МВА

А

МВА

А

А

мм

С-2

47,708

31,333

57,077

299,6

111,496

585,2

314,6

240

370>314,6

АС-240/39

610>299,6    610>585,2

2-1

27,573

18,008

32,933

172,9

87,38

458,6

181,5

185

230>181,5

АС-185/29

510>172,9    510>458,6

1-4

5,488

6,028

8,152

42,79

62,616

328,6

44,93

120

125>44,93

АС- 95/16

330>42,79    330>328,6

3-4

26,793

15,398

30,902

162,2

87,944

461,6

170,3

185

230>170,3

АС-185/29

510>162,2   510>461,6

С-3

42,495

34,201

54,548

286,3

111,496

585,2

300,6

240

370>300,6

АС-240/39

610>286,3   610>585,2


5.2.4. Определение параметров линии проделаем в табличной форме.

Таблица 5.2

ЛЭП

Ro

d

Xo

Bo

L

R

X

Qзар/2

Ом/км

мм

Ом/км

см/км

км

Ом

Ом

Мвар

С-2

0,122

21,6

0,401

2,835×10-6

18

2,196

7,214

0,309

2-1

0,159

18,8

0,409

2,772×10-6

18

2,862

7,37

0,302

1-4

0,299

13,5

0,430

2,634×10-6

30

8,97

12,905

0,478

3-4

0,159

18,8

0,409

2,772×10-6

25

3,975

10,236

0,419

С-3

0,122

21,6

0,401

2,835×10-6

20

2,44

8,016

0,343


5.2.5. Нагрузки узлов с учетом зарядной мощности.


Так как в узлах 1,2,3,4 только потребление реактивной мощности, то по 1 закону Кирхгофа зарядная мощность во всех узлах будет вычитаться.

5.2.6. Расчет потокораспределения в нормальном режиме работы по нагрузкам узлов с учетом зарядной мощности и по формулам через сопротивления линий.

Поток головного участка SС-2:


Проверка SC’-3:

Результат совпал с ранее вычисленным, значит расчет потокораспределения выполнен правильно.


5.1.7. Расчет потерь мощности.

5.2.8. Потокораспределение в схеме с учетом потерь мощности.

Снос производим на точки «С» балансирующего узла от точки потокораздела «4» (рис.5.10.) используя 1 закон Кирхгофа.


   

6. ОКОНЧАТЕЛЬНАЯ РАЗРАБОТКА СХЕМ ПОДСТАНЦИЙ

Согласно норм технологического проектирования сетей, исходя из числа присоединений (число ЛЭП + число трансформаторов), вида ПС, напряжения на высшей стороне ПС, принимаем следующие схемы ПС на высшем напряжении:

Страницы: 1, 2, 3, 4


ИНТЕРЕСНОЕ



© 2009 Все права защищены.