реферат, рефераты скачать
 

Исследование возможности извлечения редких металлов из золы-уноса ТЭЦ (MS Word 97)


p> Исследователи В.М. Кострикин и Б.Н. Иванов-Эмин в качестве сырья применяли озоленные сажистые уносы одной из газостанций [18].

Эту золу обрабатывали в дистилляционных аппаратах соляной кислотой при температуре 150(С. Образующийся тетрахлорид германия отгоняли вместе с парами соляной кислоты и направляли на получение германия. Кислотные остатки промывали водой при кипячении в течение 30 мин. Нерастворимый остаток, состоящий в основном из гидрата окиси кремния, отфильтровывали.

Для отделения алюминия и галлия от железа последний восстанавливали тиосульфатом натрия, затем из раствора с помощью анилина осаждали гидроокиси галлия и алюминия. Полученные осадки содержали: алюминий, серу, титан, ванадий, железо и практически весь галлий. Осадки отфильтровывали, промывали водой или 3%-ным раствором сульфата алюминия, затем обрабатывали
6-н. соляной кислотой, отфильтровывали от серы. Галлий из раствора выделяли с помощью ферроцианида калия, для чего раствор нагревали до кипения. Для осаждения использовали 10%-ный раствор осадителя. Осадок отфильтровывали, промывали слабым раствором ферроцианида калия и озоляли.

Полученные полуторные окислы содержали от 0,3 до 0,75% окиси галлия.
Окиси сплавляли с перекисью натрия, сплав выщелачивали водой. Раствор, содержащий галлий и алюминий, нейтрализовывали аммиаком до слабокислой реакции. Гидроокиси растворяли в соляной кислоте и при 6-н. кислотности галлий извлекали эфиром. Эфир отгоняли, остаток растворяли в слабой соляной кислоте. Из раствора осаждали гидрат окиси галлия.

Разработан промышленный процесс переработки возгонов газификации углей.

Первой операцией является удаление кремния и окиси алюминия, что достигают плавлением с окисью меди и определенным флюсом. В результате получают шлак, который удаляют, и металлический штейн, содержащий медь, железо, мышьяк, серу, германий и галлий. Штейн растворяют в разбавленном растворе хлорида железа при пропускании хлора. Полученный раствор переносят в сосуд для дистилляции и после добавления серной кислоты до 7-н. кислотности производят дистилляцию и конденсацию паров в две фракции.
Первую фракцию - раствор AsCl3 в соляной кислоте (1:1) – отбрасывают, вторую фракцию, содержащую тетрахлорид германия и до 20% AsCl3, используют для выделения германия; галлий извлекают из кубового остатка.

Этот раствор направляют на выпарной аппарат и обрабатывают алюминиевыми стружками для осаждения меди и других тяжелых металлов и восстановления железа. Отфильтрованный раствор доводят до 7-н. кислотности по соляной кислоте и экстрагируют изопропиловым эфиром. Хлорид галлия, растворенный в эфире, извлекают 2%-ным раствором соляной кислоты; эфир после дистилляции используют повторно. Раствор хлорида галлия обрабатывают сероводородом для отделения молибдена и мышьяка, которые растворяются в эфире. Раствор после отделения осадка фильтрованием кипятят для удаления сероводорода. После окисления азотной кислотой раствор обрабатывают избытком раствора едкого натра и направляют на электролиз.

В последние годы появились обзорные и технологические работы японских
[19], польских, чешских, венгерских и других исследователей по извлечению галлия и германия из летучих возгонов, полученных в процессе сжигания и газификации углей, а также промывных вод отделителей смолы. Для возгонов особое значение приобрели щелочные способы переработки, которые заключаются в сплавлении или спекании их с едким натром или с содой [19], окисью меди и углем и спекании с известняком. Последним из способов можно получить также и глинозем.

Нейтрализация спека или плава [20] соляной кислотой до концентрации 0,2- н. HCl позволяет выделить в осадок основную часть гидрата окиси алюминия и кремния. После отделения осадка раствор нейтрализуют до pH=5 и из него осаждают гидраты окиси галлия и германия. Осадок редких металлов растворяют в соляной кислоте и из раствора германий осаждают в виде дисульфида GeS2
(при концентрации 4-н. HCl) или германата магния. Галлий выделяется из раствора в виде гидроокиси.

Щелочные растворы галлата, германата и алюмината можно перевести в солянокислые и оттуда галлий извлечь экстракцией. Эфирный экстракт обрабатывают раствором едкого натра и электролизом выделяют металлический галлий. Извлечение галлия из золы по этой схеме составляет 80%.

По схеме извлечения галлия и глинозема методом спекания золы и пыли с известняком [21] золу или другие углистые продукты смешивают с известняком и спекают при 1325-1375(С. В процессе спекания окись галлия, аналогично окиси алюминия образует с известью галлаты кальция составов 5CaO(3Ga2O3 и
CaO(Ga2O3. Спек выщелачивают раствором соды, при этом алюминий и галлий переходят в раствор, а кремнезем в виде двухкальциевого силиката вместе с гидратом окиси железа остается в шламе. В результате выщелачивания в алюминатный раствор извлекается из золы 90-93% галлия. Получить его из этого раствора можно карбонизационно-известковым способом.

Для использования летучих возгонов необходимо обогащать их редкими металлами до концентраций, окупающих их дальнейшую переработку. Для переработки золы предлагают восстановление ее при температуре 1000(C с отгонкой редких элементов в пыль, восстановление водородом при температуре более 500(C с отгонкой, сублимацию содержащихся соединений при температуре более 700(С в атмосфере CO2; CO2+CO, Ar и др. при пониженном давлении. Для дополнительного обогащения золы предлагают применять восстановительный обжиг при температуре более 1000(C и использовать в качестве восстановителя
C, CO, CH4 или H2.

При сжигании угля галлий в большей степени переходит в возгоны и теряется с дымовыми газами. Японские исследователи предложили промывать эти отходящие газы щелочными и кислотными растворами и охлаждать. При этом галлий переходит в раствор, из которого после удаления сажи и нерастворимых примесей его вместе с железом и германием осаждают танином.

Другой метод извлечения галлия из воды заключается в следующем. Газовую воду после удаления аммиака смешивают с неочищенной водой до pH=8(9 и раствор окисляют воздухом, который продувают в течение 2-3 ч при 75-85(C, а затем подкисляют серной кислотой до pH=2(3. При этом получают смолистый органический осадок, содержащий основное количество галлия и германия, из которого после озоления и обработки концентрированной соляной кислотой германий извлекают в виде его тетрахлорида, а галлий экстракцией изопропиловым эфиром с последующим осаждением гидроокиси, растворением её в щелочи и электролизом.

Известен способ получения галлия из воды от промывки газа или орошения возгонов. Воду упаривают до [pic] первоначального объема и эфиром извлекают фенолы.

При дальнейшем упаривании получают органическую массу, в которой содержатся редкие металлы. Её озоляют при 600-700(C и сплавляют с едким натром, сплав выщелачивают соляной кислотой, из солянокислого раствора отгоняют германий, а из остатка экстрагируют галлий.

Один из способов извлечения галлия и германия из побочных продуктов переработки каменных углей заключается в следующем. Возгоны промывают кислыми и щелочными растворами, эти растворы окисляют, к ним добавляют
Fe(II), Fe(III), Ni, Cu или Al в виде солей в трехкратном отношении к германию и кремнию и соосаждают галлий и германий при pH=6(7,3, если добавлены Fe(II), Cu или Ni и при pH=4,5(6, если добавлены Fe(III) или Al.

В другом варианте растворы, содержащие галлий, окисляют воздухом, озоном, перекисью водорода, KMnO4, K2Cr2O7 при pH раствора более 6. В результате соединения галлия и германия переходят в осадок. Этот осадок сушат, прокаливают при 400-450(C и получают золу. Золу обрабатывают HCl и
Cl2, затем германий удаляют дистилляцией, остаток фильтруют, экстрагируют и из реэкстракта извлекают галлий.

Польские исследователи предлагают из растворов с концентрацией галлия и германия не более 0,01 мг(л-1 выделять их путем хемосорбции гумминовыми соединениями, поглощающая способность которых зависит от pH и поэтому условия адсорбции могут быть подобраны для каждого из элементов.

Разработана [22] кислотно-экстракционная технология извлечения галлия из золы-уноса от сжигания энергетических углей. В работе использовали зольные уносы от сжигания экибастузского угля следующего состава, %: Al2O3
– 15,65; Fe2O3 – 17,24; CaO – 10,82; Mg – 4,98; SiO2 – 28,50; Zn – 4,33;
Na2O – 2,15; K2O – 2,27; Ga – 0,019 [23]. Золу обрабатывали соляной кислотой концентрацией 4 моль/дм3 при температуре 80(C, продолжительности 2 ч, соотношении Т:Ж=1:4. В раствор переходит до 85% галлия, кремний практически весь остается в нерастворимом остатке. Из солянокислого раствора галлий экстрагировали 0,3-М раствором триалкиламина в керосине с добавлением 20% эксола. Экстракцию вели в противотоке в 6 ступенях экстрактора ящичного типа. При этом галлий практически полностью перешел в органическую фазу (99,6%). Реэкстракцию проводили раствором NaOH с pH=12,54. Извлечение галлия по предложенной схеме составило 76-77%.

1.2. Способы извлечения ванадия из промышленных отходов

Ванадий широко распространен в природе и составляет около 0,02% от веса земной коры, то есть примерно столько же, сколько цинк и никель. Однако он более рассеян и присутствует виде следов во многих рудах. Месторождения собственно ванадиевых руд в природе встречаются довольно редко. Небольшое его количество найдено в железных, свинцовых, свинцово-цинковых, свинцово- медных и алюминиевых рудах [24]. Практически весь ванадий земной коры находится в её твердой оболочке – литосфере – в изверженных породах, где он вследствие близости размеров ионных радиусов V3+ и Fe3+ изоморфно замещает катион железа (III) [25].

В связи с отсутствием собственных руд ванадия, рентабельных для эксплуатации, этот элемент выделяют из различных полупродуктов. Ванадий добывают из отходов переработки карнотитовых руд (сырье для получения урана) и в небольших количествах – при переработке апатитов и бокситов.
Самыми важными источниками ванадия являются некоторые асфальты, в которых его содержание доходит до 25%, битуминозные сланцы и нефть. Из других важных источников получения ванадия следует назвать шлаки, получающиеся при переработке титаномагнетитовых руд. В Польше небольшие количества ванадия извлекают из шлаков медеплавильных заводов [26].

Ванадий является исключительно литофильным элементом и при флотации медных руд переходит в концентрат в количестве около 50%. При выплавке медного штейна ванадий из-за своей литофильности концентрируется в шлаке.

Аналогично и в процессе выплавки чугуна из руд, содержащих ванадий, этот элемент переходит в шлак. Причем особо богаты ванадием конвертерные шлаки.

Ванадий в шлаках содержится в виде соединений типа шпинели FeO(V2O3 и
MnO(V2O5. В мартеновских шлаках ванадий, кроме того, входит в состав силикатов типа оливина (Mg, Fe)2SiO4 и пироксена CaFeSi2O6 [27]. Ванадиевые шлаки представляют собой ванадиевые концентраты, относительно легко перерабатываемые на V2O5 или ванадат кальция.

Переработка ванадиевых шлаков наиболее эффективно производится следующими способами: 1) окислительным обжигом с поваренной солью или сильвинитом; 2) окислительным обжигом с содой; 3) хлорированием. Наиболее пригодно для передельных шлаков вскрытие путем окислительного обжига с поваренной солью. Из шлаков, содержащих более 12% CaO, обжиг с содой дает более высокое извлечение, чем обжиг с поваренной солью. Хлорированием извлекают из конвертерных шлаков наряду с ванадием также и титан.

Механизм обжига шлаков с NaCl изучен М.Н. Соболевым с сотрудниками
[25]. Показано, что выше 800-850(C в окислительной атмосфере реакция

2NaCl+ЅO2=Na2O+Cl2 значительно ускоряется в присутствии окислов железа, марганца и особенно
V2O5. Образующаяся Na2O реагирует с V2O5:

Na2O+V2O5=2NaVO3

Окислительная атмосфера в зоне обжига способствует окислению V (III), входящего в состав шпинели. Выделяющийся при обжиге хлор также участвует в процессе вскрытия шпинели:

FeO(V2O3+4ЅCl2=2VOCl3+FeCl3+O2

Хлорированию подвергают смесь измельченного шлака со стехиометрическим по отношению к ванадию количеством NaCl. Спек после обжига охлаждают и выщелачивают водой. В раствор переходит до 95% ванадия. Содержание ванадия в растворе достигает 30 г/дм3 в расчете на V2O5. Из осветленного раствора добавкой серной кислоты осаждают V2O5(xH2O, который затем сушат и прокаливают до V2O5.

После выделения около 96% V2O5 остаток ванадия из раствора высаживают добавкой известкового молока, получая труднорастворимый 2CaO(V2O5(Ca(OH)2.
Полученный осадок используют в производстве феррованадия.

При переработке бокситов методом Байера примерно 65% ванадия переходит в шлам, остальная часть находится в растворе. Увеличению доли ванадия, переходящего в алюминиевый раствор, благоприятствует его пятивалентная форма. При наличии в алюминатном растворе 100-300 г/л Na2O растворимость солей ванадия можно значительно снизить, добавив NaF в соотношении
V2O5:NaF=1:2. Ванадий переходит в осадок в виде соли 2Na3VO4(NaF(19H2O
[28]. По другим данным, для переработки ванадиевого концентрата, являющегося побочным продуктом глиноземного производства, предложена следующая технологическая схема. Ванадиевый концентрат (до 38% V2O5 и 60% влаги) растворяют в 20%-ном растворе NaOH. В раствор извлекается 99,4% V.
После фильтрации к раствору добавляют NH4Cl и выделяют NH4VO3, который очищают перекристаллизацией. Соль сушат и прокаливают при 500-550(C. Выход
V2O5 – 94% [29].

Отходы уранового производства, содержащие ванадий, – ценное сырье.
Перспективен метод их переработки хлорированием в присутствии восстановителя. Продукт хлорирования VOCl3 – легколетучая жидкость, которую подвергают дистилляционной очистке, гидролизу в присутствии аммиака, последующей сушке и прокалке до V2O5.

В практике работы промышленных предприятий для выделения ванадия из растворов, получаемых после переработки карнотитовых руд, применяются ионитные и экстракционные процессы. В современной металлургической промышленности сорбционные методы получают все большее распространение
[30].

Существует способ переработки патронитовых ванадийсодержащих концентратов, полученных из зол асфальтитов, заключающийся в многократной обработке руд крепкой щелочью и переводом ванадия в раствор. Для нейтрализации растворов используют азотную кислоту. Ванадий после выпаривания и разбавления растворов осаждают хлористым алюминием.

В ряде патентов предлагается обработка ванадийсодержащих материалов растворами сульфида натрия или проведение плавки с применением в качестве шихтовых материалов смеси сульфата натрия с углеродом. При этом образуются сульфованадаты натрия, которые легко растворяются в воде. Осторожным подкислением выделяется ванадий в форме сульфидов (V2S5 или V2S3). В данных процессах достигается очень хорошее отделение ванадия от железа [31, 32].

Разработан процесс извлечения некоторых металлов (Li, B, V и Ga) из летучей угольной золы [33]. Процесс включает 3 операции: двухстадийное выщелачивание серной кислотой при двух различных концентрациях, концентрирование редких металлов из раствора с применением хелатных смол и очистка каждого металла экстракцией. Галлий и ванадий выщелачивают 3-н. раствором H2SO4, затем концентрируют их совместно на хелатной смоле иминодиацетатного типа и очищают экстракцией с применением триоктиламмонийхлорида и ди(2-этилгексил)фосфорной кислоты соответственно.

Другой кислотный метод обработки золы был запатентован в США [34]. Он заключается в выщелачивании золы, содержащей V и Ni, соляной кислотой с промотором растворения (V2O5, гипохлориты натрия, калия, кальция, пероксиды, ClO2). Затем щелока отделяют от остатка и обрабатывают гидроксидом натрия, калия или кальция, повышая pH раствора до уровня 5,5-
6,5(6,2). Выпадающий при этом осадок, содержащий соединения V(3+) и V(4+), отделяют от раствора, который затем дополнительно подщелачивают (до pH 8,5-
9,5), выделяя в осадок гидроксид никеля. Ванадийсодержащий осадок высушивают, после чего смешивают с гидроксидом натрия, калия или кальция, смесь прокаливают на воздухе при 500-1000(C (950(C), в результате чего ванадий окисляется до пятивалентного состояния. V(5+) выщелачивают водой, полученные щелока подкисляют соляной кислотой, выделяя в осадок V2O5.

Предложены также щелочные способы обработки золы с целью извлечения ванадия. В одном из способов [35] ванадийсодержащую золу подвергают гравитационному разделению. Обогащенную ванадием фракцию выщелачивают щелочным раствором, продувая одновременно газ-окислитель (например, сжатый воздух). Щелочной раствор концентрируют, затем пропускают через него CO2- содержащий газ до pH 8-9. Осадок отделяют. К раствору добавляют соль аммония (NH4Cl) для извлечения ванадия в виде аммонийной соли.

В другом способе [36] смоченную золу-уноса подвергают разделению для образования тонкодисперсного углеродного продукта и не содержащей углерода водной суспензии. Полученную суспензию выщелачивают при повышенном давлении в растворе гидроксида щелочного металла с концентрацией менее 5 моль/л при
110-300(C. Суспензию разделяют на жидкую и твердую фазы для получения щелока от выщелачивания, обогащенного ванадием, и обедненного ванадием остатка. Щелок от выщелачивания приводят в контакт с экстрагентом, содержащим четвертичный амин и производное оксима. Затем насыщенный экстрагент приводят в контакт с водным раствором для получения ванадийсодержащего водного щелока и регенерированного экстрагента. Из ванадийсодержащего щелока извлекают ванадийсодержащие соединения.

Предложены способы извлечения ванадия из ванадийсодержащего сырья путем электрохимического выщелачивания [37, 38]. В этих исследованиях в качестве электролита предлагают использовать растворы, содержащие хлориды и карбонаты щелочных металлов. Электролиты, содержащие хлор-ионы, вызывают коррозию аппаратуры, использование карбонатов сопряжено с трудностями регенерации отработанного электролита. Объектом служил ванадийсодержащий конвертерный шлак Нижне-Тагильского металлургического комбината с содержанием пятиокиси ванадия 18,38%. Задача поисковых исследований заключалась в нахождении оптимальных параметров процесса, подборе конструкции и вида материалов электролизёров и электродов, состава электролитов. Факторы: температура и время выдерживания, плотность тока, концентрация электролита, высота и навеска шлакового слоя, перемешивание, введение активирующих веществ, отношение Т:Ж, а также температура и продолжительность предварительной термической обработки шлака. Были опробованы различные конструкции электролизёров и электродов из графита, никеля, свинца и нержавеющей стали. Наиболее подходящими оказались электроды из нержавеющей стали. Электролизёр имел форму стакана из оргстекла, катод представлял собой полый цилиндр, через который проходило перемешивающее устройство. Вокруг катода располагались аноды, сделанные в виде лопастей. Нижняя часть катода отделялась от среды фильтровальным материалом.

При использовании в качестве электролита серной кислоты (5-13%) степень перехода ванадия в раствор составила в пределах 60-80%. При этом раствор в значительном количестве загрязнялся железом, алюминием, фосфором и другими примесями. Так же не дали желаемого результата электрохимическое выщелачивание шлака в растворе едкого натра, хлорида натрия и их смеси.
Извлечение ванадия в растворе не превышало 30-40%. Поэтому дальнейшие исследования проводили с предварительно обожженным шлаком. В качестве электролита использовали раствор едкого натра различной концентрации.
Видимо, предварительная термическая обработка шлака (780-800(C, 15-20 мин) способствует разрушению его силикатной составляющей вследствие окисления шпинелида, что интенсифицирует процесс электрохимического выщелачивания.

Можно предположить, что увеличение скорости окисления ванадия низких валентностей происходит и за счет выделения атомарного кислорода при электрохимическом процессе.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1. Характеристика золы

Зола и шлак ТЭЦ представляет собой остаток от сжигания твердого топлива. Они являются продуктами высокотемпературной (до 1200-1700(C) обработки минеральной, несгорающей части углей. При этом в камерных топках получают отходы двух видов: зола-уноса и шлак.

Шлак образуется в результате сжигания размягченных частиц золы в объеме топки или на ее стенках и накапливается в шлаковом бункере под топкой.
Размер зерен шлака 1(50 мм. Зола-уноса уносится из топки с дымовыми газами и улавливается при их очистке в циклонах и электрофильтрах. Размер частиц золы менее 1 мм. Свыше 80% минеральной части углей переходит в золу, до 20%
– в шлак.

Химический состав золы ТЭЦ-4

(экибастузский уголь)
|SiO2 |Al2O3 |FeO |CaO |MgO |SO2 |TiO2 |K2O |Na2O |P2O5 |MnO2 |
|61-62|27,3% |5,65%|1,17%|0,49%|0,52%|1,49%|0,42%|0,32%|0,52%|0,17% |
|% | | | | | | | | | | |

Содержание химических элементов в золе, % масс.
|Элементы |% масс. |
|Кремний, (Si) |29 |
|Железо, (Fe) |4,0 |
|Кальций, (Ca) |0,52 |
|Алюминий, (Al) |11,0 |
|Магний, (Mg) |0,16 |
|Стронций, (Sr) |0,044 |
|Титан, (Ti) |0,38 |
|Марганец, (Mn) |0,082 |
|Барий, (Ba) |0,20 |
|Иттрий, (Y) |0,0040 |
|Лантан, (La) |0,0014 |
|Церий, (Ce) |0,0066 |
|Иттербий, (Yb) |0,0006 |
|Тербий, (Tb) |0,0008 |
|Диспрозий, (Dy) |0,0009 |
|Самарий, (Sm) |0,0005 |
|Торий, (Th) |0,0006 |
|Уран, (U) |0,0002 |
|Цирконий, (Zr) |0,034 |
|Медь, (Cu) |0.0056 |
|Ванадий, (V) |0,014 |
|Галлий, (Ga) |0,0044 |

Примечание: анализ золы проводился в институте Гидроцветмет (г.
Новосибирск).

2.2. Техника безопасности

Техника безопасности при выполнении любой работы в химической лаборатории должна быть предметом постоянного внимания, так как даже незначительная неосторожность и невнимательность могут привести к несчастным случаям с тяжелыми последствиями.

Правила работы с электрическим оборудованием.

При работе с электрооборудованием необходимо соблюдать следующие требования:
. электрооборудование должно быть исправным;
. при работе с электрооборудованием, находящимся под напряжением, применять исправные средства защиты (резиновые перчатки, изолирующие подставки и др.), работу проводить инструментом с изолированными рукоятками;
. в случае перерыва подачи электроэнергии все приборы должны быть немедленно выключены;
. в случае загорания проводов или электрооборудования, находящегося под напряжением, необходимо выключить электроэнергию и тушить огонь сухим углекислотным огнетушителем, сухим песком, покрывалом из асбеста.

Страницы: 1, 2, 3, 4


ИНТЕРЕСНОЕ



© 2009 Все права защищены.