реферат, рефераты скачать
 

Разработать систему управления автоматической линией гальванирования на базе японского программируемого контроллера TOYOPUC-L


p> Постоянно сканируя входные сигналы с датчиков системы управления знает где находится тот или иной рабочий орган в данный момент и удовлетворяет ли это положение рабочего органа программе управления автоматической линии гальванирования . При нахождении неисправности система управления выдаёт сигнал ошибки .

Для перемещения автооператора на некоторое расстояние разработан привод с асинхронным двигателем ( АД ) . Работой асинхронного двигателя управляет система управления тиристорного преобразователя частоты ( ТПЧ ) , в которую входит управляющая ОМ ЭВМ . Управляемые сигналы для перемещения автооператора поступают в систему управления тиристорного преобразователя частоты из контроллера от блока управления приводом . Входные и выходные блоки контроллера представляют собой платы управления с максимальным напряжением на входе и выходе в 24 В .

4.2.1 РАЗРАБОТКА ЭЛЕКТРОАВТОМАТИКИ ПРИВОДА

ТРЕБОВАНИЯ , ПРЕДЪЯВЛЯЕМЫЕ К ПРЕОБРАЗОВАТЕЛЮ ЧАСТОТЫ , ПРЕДНАЗНАЧЕННЫЕ

ДЛЯ ПИТАНИЯ ЭП ПЕРЕМЕННОГО ТОКА .

К преобразователю частоты предъявляются следующие основные требования
:

- простота обслуживания ;

- возможность независимого регулирования напряжения в широких пределах ;

- минимальное внутреннее сопротивление для сохранения естественных регулировочных характеристик электрической машины ;

- исключение возможности возбуждения двигателя за счёт конденсаторов инвертора ;

- обеспечение удовлетворительного гармонического состава выходного напряжения ;

- обеспечение возможности перевода двигателя в генераторный режим или обеспечение возможности динамического торможения ;

- малая инерционность по каналам регулирования ;

- обеспечение согласованного регулирования напряжения и частоты по принятому закону в системе преобразователь –двигатель ;

- универсальность , т. е. схема и параметры преобразователя должны предусматривать работу с любым из выпускаемых серийно двигателем заданной мощности независимо от схемы соединения его обмоток , количество выводов статорной обмотки и других технических характеристик двигателя .

ВЫБОР ТИПА ПРЕОБРАЗОВАТЕЛЯ ЧАСТОТЫ .

Исходя из обзора статических ПЧ и большого их выбора, наиболее преемственным для частоты регулирования привода переменного тока является
ПЧ с промежуточным звеном постоянного тока и непосредственные ПЧ.

Проведем сравнительную характеристику данных типов ПЧ .
| СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА. |ПЧ С ПРОМЕЖУТОЧН. |НЕПОСРЕДСТВЕННЫЕ |
| |ЗВЕНОМ ПТ. |ПЧ. |
|КПД |- |+ |
|Диапазон регулирования напряжения.|+ |- |
| | | |
|Коэффициент мощности. |+ |- |
|Гармонический состав | | |
|выходное напряжение. |+ |- |
|Габариты и масса. |- |+ |
|Универсальность. |+ |- |

Таким образом, ПЧ с непосредственной связью имеет два основных достоинства : более высокий КПД и меньшие габариты и массу. Однако улучшение гормонального состава выходного напряжения и повышения коэффициента мощности требует дополнительной установки фильтров и компенсирующих устройств, что значительно увеличивает массу и габариты. Так же непосредственный ПЧ позволяет регулировать частоту выходного напряжения только вниз от номинальной частоты питающего напряжения.

В ПЧ с промежуточным звеном ПТ функцию регулирования частоты выходного напряжения осуществляет инвертор, а напряжение – выпрямитель.
Системы управления инвертора ( СУИ ) и выпрямителя ( СУВ ) позволяет регулировать выходную частоту и напряжение в широких пределах, что является главным достоинством данного типа преобразователя.

Таким образом, с промежуточным звеном постоянного тока имеет более лучшие технико – экономические показатели по сравнению с другими типами статических ПЧ.

Выбор основных элементов преобразователя

Основными элементами ПЧ с промежуточным звеном постоянного тока
(рисунок 1.1) является выпрямитель и инвертор, выбор которых и определяет силовую схему преобразователя .

Рисунок 1.1. Структурная схема преобразователя частоты с промежуточным звеном постоянного тока.

Наиболее высокие технико – экономические показатели имеет трехфазная мостовая схема выпрямителя ( В ). Так как выпрямитель должен обеспечивать регулирование величины напряжения, необходимо в мостовой схеме устанавливать управляемые тиристоры, либо после неуправляемого выпрямителя ставить широтно – импульсный регулятор ( ШИР ). Второй вариант более целесообразен, т. к. в этом случае повышается КПД и коэффициент мощности выпрямителя, уменьшаются его габариты и стоимость. Для сглаживания пульсаций выпрямленных токов и напряжений необходима установка фильтра ( Ф
). Схема выпрямителя с широтно – импульсным регулятором и Г – образным LG – фильтром представлена на рисунке 1.3.
Важнейшей составной частью тиристорного преобразователя частоты с промежуточным звеном ПТ является инвертор. Автономные инверторы ( АИ ) – это устройства, преобразующие постоянный ток ( ПТ ) в переменный с постоянной или регулируемой частотой, работающие на автономную нагрузку.

В последние годы налажен выпуск тиристорного модуля серии

МТЗ – 3 ( модуль тиристорный запираемый ) рисунок 1.2, который значительно превосходит по характеристикам выпускаемые ранее двухоперационные тиристоры. Таким образом появилась возможность выполнить инвертор, имеющий более простую силовую схему, меньшие габариты и массу, по сравнению с инвертором, выполненном на базе обычных тиристоров с применением узлов принудительной коммутации.

Рисунок 1.2. Тиристорный модуль серии МТЗ – 3 .

В зависимости от особенностей протекания электро – магнитных процессов автономные инверторы могут быть разделены на два типа : автономные инверторы тока ( АИТ ) и автономные инверторы напряжения ( АИН ).
Для автономных инверторов тока характерно то, что в результате переключения тиристоров в нагрузке формируется ток определённой формы, а форма выходного напряжения зависит от параметров нагрузки. В режиме холостого хода автономный инвертор тока не работоспособен в следствии роста амплитуды обратных и прямых напряжений на тиристорах. При перегрузках его работа затруднена из-за не достаточного времени для восстановления запирающих свойств тиристоров.
Автономный инвертор напряжения может работать в режиме холостого хода.
Его работоспособность в режиме близкому к короткому замыканию определяется коммутационнами свойствами коммутирующих элементов. Автономный инвертор напряжения характеризуется стабильностью выходного напряжения при изменении выходной частоты в широких пределах. Коммутационная мощность элементов небольшая , коммутационные процесы в них мало влияют на выходное напряжение.

Таким образом, АИМ имеет лучшие технические характеристики для питания
ЭП переменного тока в сравнении с автономным инвертором тока. Существует большое количество трёхфазных схем автономного инвертора напряжения, но распространение получили инверторы, выполненные по мостовой схеме ( схема
Ларионова ).

Нагрузка инвертора, собранного по схеме Ларионова ( рисунок 1.3 ) , может быть соединена как треугольником так и звездой.
[pic] Рисунок 3.3. Силовая схема ПЧ.

Проектируемый преобразователь выполняется без входного трансформатора, что позволяет при некотором снижении универсальности ( питающая сеть обязательно должна быть трёхфазной с Vном =380 В ) значительно снизит габариты и массу.

4.2.2. ОПИСАНИЕ БЛОК – СХЕМЫ ТИРИСТОРНОГО ПРЕОБРАЗОВАТЕЛЯ ЧАСТОТЫ

Дадим описание блок – схемы всего тиристорного преобразователя частоты ( лист 45 ). Питающее напряжение 380 В выпрямляется трёхфазным мостом ( В ), фильтруется ( Ф ) и поступает на широтно – импульсном регуляторе ( ШИР ).
Необходимость в широтно – импульсный регулятор вызвана тем, что наряду с регулировкой частоты требуется и регулировка напряжения, так как, например, с уменьшением частоты уменьшается и индуктивное сопротивление асинхронного двигателя ( АД ), и если величина питающего напряжения будет неизменна, то пропорционально возрастёт ток. Поэтому напряжение тиристорного преобразователя частоты должно изменяться вместе с частотой примерно одинаково. Такой способ регулировки напряжения выбран потому, что он обладает существенными преимуществами перед непрерывным: малые потери, большой КПД, небольшие габариты. Инвектор ( И ) осуществляет преобразование постоянного напряжения в переменное с заданной частотой.
Автоматические воздушные выключатели QF 1 – QF 2 защишают соответственно широтно – импульсный регулятор, инвертор и асинхронный двигатель.
Трансформатор напряжения ( ТН ) контролирует наличие напряжения на асинхронном двигателе ( по фазам ). Блок датчиков ( БД ) включает собственно трансформатор напряжения и магнитный датчик тока ( МДТ ).
Особенностью датчиков является то, что они выполнены с зазором для обеспечения линейности при снижении частоты.
С пульта управления ( ПУ ) задают требуемые условия работы асинхронного двигателя: скорость, темп её нарастания / спадания, величину тока ограничения и другие, которые отражаются на блоке индикации (БИ ) и заносятся в оперативно – запоминающее устройство ( ОЗУ ) системы управления
( СУ ). Источник питания ( ИП ) обеспечивает требуемое напряжение для блоков тиристорного преобразователя частоты. Тахогенератор ( ТГ ) контролирует скорость вращения асинхронного двигателя и явлается одним из элементов цепи обратной связи тиристорного преобразователя частоты.

После реактора ( Р ), ограничивающего скорость тока di / dt , включен заградительный фильтр ( ЗФ ). Реактор и заградительный фильтр образуют резонансный контур, настроенный на частоту 250 Гц.

Согласующее устройство ( Согл. У ), состоящее из преобразователей напряжения – частота и частота напряжения, контролирует величину напряжения инвертора и обеспечивает гальваническую развязку системы управления от цепей высокого напряжения.

4.3. РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ СХЕМЫ СУАЛГ.


Выбор и расчёт элементов схемы.

В промышленном автооператоре портального типа , осуществляем работу линии для перемещения деталей применяются асинхронные электродвигатели переменного тока напряжением 380 В. Технические характеристики двигателей , применяемых в автооператоре для горизонтального перемещения и вертикального
:

горизонтального перемещения : вертикального перемещения :

Тип двигателя - АОЛ 2 – 31 – 6 / 4 / 2 ТЭ 0,5 В 3 – С

Мощность - 0,6 кВт 0,5 кВт

Число оборотов - 955 об /мин

Для подключения асинхронных двигателей к сети трёхфазного переменного тока используют магнитный пускатель. Определим максимальный ток потребляемый каждой из электродвигателей во время работы.
При соединении обмоток двигателя звездой , ток потребляемый двигателем:

Iл* = Iф* = [pic]

где

S – полная мощность симметричной трёхфазной системы , В[pic]А.

S1 = 0,6 В[pic]А ;

S2 = 0,5 В[pic]А

Uф – фазное напряжение.

В случае соединения обмоток двигателя звездой :

Uф1* = Uф2* = 220 В

Следовательно токи , потребляемые двигателями в каждой из фаз при соединении обмоток звездой :

In1* = [pic]

In1* = [pic] = 2,7 А

[pic] In1* = [pic] = 0,9 А = 1
А

In2* = [pic]

In2* = [pic] = 2,3 А

[pic] IФ1* = [pic] = 0,8 А

В случае соединения обмоток двигателя треугольником :

[pic]

где

[pic] – линейное напряжение при соединении треугольником В .

[pic] = 380 В

Следовательно токи потребляемые каждым из двигателей при соединении его обмоток треугольником :

[pic]

[pic] = 0,8 А

Приведённые расчёты показали , что максимальный ток потребляемый каждым из двигателей возникает в сети при соединении обмоток двигателя звездой.

Учитывая , что в момент запуска пусковой ток увеличивается в 5 – 6 раз возникает необходимость выбора магнитного пускателя с контактной группой расчитанной на максимально допустимый ток 5 – 6 А. Этим требованиям вполне удовлетворяет магнитный пускатель ПМА – 0100.

Техническая характеристика магнитного пускателя ПМА – 0100 :

Uраб = 380 В ;

Iконт = 6,3 А ;

Sвкл = 40 В[pic]А

4.4 СИСТЕМА УПРАВЛЕНИЯ АВТОМАТИЧЕСКОЙ ЛИНИЕЙ ГАЛЬВАНИРОВАНИЯ

РАСЧЁТ СТАБИЛИЗИРОВАННОГО ИСТОЧНИКА ПИТАНИЯ +5 В.

В качестве источника питания выбираем стандартную схему ( трансформаторную ) с мостовой схемой выпрямления , с конденсатором в качестве сглаживающего фильтра и с компенсационным транзисторным стабилизатором на выходе.

Расчёт выпрямителя

Исходные данные :

Номинальное выпрямленное напряжение :

U0 = 9 В

Номинальный ток нагрузки :

I0 = 3 А

Выходная мощность :

P0 = U0 [pic] I0

P0 = 3 [pic] 9 = 27 Вт

Сопротивление нагрузки :

Rн = [pic] = 6 Ом

Номинальное напряжение сети :

U1 = 220 В

Относительное отклонение в сторону повышения :

amax = [pic]

amax = [pic] = 0,091

Относительное отклонение сети в сторону понижения

amin = [pic]

amin = [pic] = 0,091

Частота тока сети :

fс = 50 Гц

Определяем параметры диодов.

Амплитуда обратного напряжения :

Uобр. max = 1,57 [pic] U0 [pic] ( 1 + amax ) ( 1 , ст. 323 )

Uобр. max = 1,57 [pic] 9 [pic] (1 +
0,091 ) = 15,4 В

Среднее значение прямого тока :

Iпр.ср. = 0,5 [pic] I0

( 1 , ст. 323 )

Iпр.ср. = 0,5 [pic] 3 = 1,5 А

Действующее значение тока :

Iпр. = 0,707 [pic] I0

( 1 , ст. 323 )

Iпр. = 0,707 [pic] 3 = 2,2 А

По результатам расчётов выбираем по справочнику диоды с учётом того , что обратное напряжение Uобр. max , приложенное к диоду , должно быть меньше максимального обратного напряжения для выбранного типа диода , а ток
Iпр.ср должен быть меньше предельно допустимого среднего значения тока , указанного в справочнике.

Исходя из выше перечисленных условий выбираем для выпрямителя диоды КД
202 Г с параметрами :

Iпр.ср.max = 4 А

( 3 , ст. 36 )

Uобр.max = 200 В

Uпр.ср. = 1,5 В

Iпр.имп. = 3 А

Iобр. = 0,05 А

Определяем сопротивление трансформатора Rтр. , диода Rпр. и по их значениям находим сопротивление фазы выпрямителя Rф.

Rтр. = [pic] ( 1 , ст. 36 )

где

В – магнитная индукция , Тл ; j – средняя плотность тока в обмотке трансформатора , [pic] .

Принимаем :

В = 1,3 Тл ( 1 , cт. 325 , табл. 9.5 )

j = 3 [pic]

( 1 , ст. 325 , табл. 9.6 )

Rтр. = [pic] = 0,44 Ом

Определяем сопротивление фазы выпрямителя.

Rф = Rтр. + 2 [pic] Rпр.

где

Rпр. – сопротивление диода.

Rпр. = [pic].

( 1 , ст. 322 )

Rпр. = [pic] = 0,38 Ом

Тогда

Rф = 0,44 + 2 [pic] 0,38 = 1,2 Ом

ОПРЕДЕЛЯЕМ НАПРЯЖЕНИЕ ХОЛОСТОГО ХОДА.

U0 хх = U0 + I0 [pic] Rтр. + Uпр. [pic] N

где

N – число диодов , работающих одновременно.

Для мостовой схемы , которая принимается

N = 2

( 1 , ст. 324 )

U0 хх = 9 + 3 [pic] 0,44 + 1,5 [pic] 2 =

13,2 В

Определяем параметры трансформатора , которые будут использоваться далее для его расчёта

Напряжение вторичной обмотки :

U2 = 1,11 [pic] U0 хх

( 1 , ст. 323 )

U2 = 1,11 [pic] 13,2 = 14,7 В

Ток во вторичной обмотке трансформатора :

I2 = 1,2 [pic] I0

( 1 , ст. 323 )

I2 = 1,2 [pic] 3 = 3,6 А

Ток в первичной обмотке трансформатора :

I1 = I2 [pic] [pic]

( 1 , ст. 323 )

I1 = 3,6 [pic] [pic] = 0,24 А

Расчёт трансформатора.

Исходные данные для расчёта приведены выше :

напряжение питающей сети :

U1 = 220 В ;

напряжение вторичной обмотки :

U2 = 9 В ;

ток во вторичной обмотке :

I2 = 3,6 А ;

ток в первичной обмотке :

I1 = 0,24 А

Определяем габаритную мощность трансформатора :

Sг = [pic] ( 1 , ст. 325 )

где

[pic] - коэффициент полезного действия.

[pic] = 0,8

( 1 , ст. 325 )

Sг = [pic] Вт

Определяем произведение площадей поперечного сечения стержня и площадь окна.

Sст. [pic] Sок. = [pic] ( 1 , ст. 325

)

где

Sкт – площадь поперечного сечения стержня магнитопровода,см2

Sок – площадь окна , см2 ; fc – частота питающей сети , Гц

fc = 50 Гц

В – магнитная индукция , Тл

Принимаем

В = 1,2 Тл

( 1 , ст. 326 )

j – плотность тока в проводах обмоток трансформатора , [pic]

Принимаем

j = 2,5 [pic]

( 1 , ст. 326 )

kм - коэффициент заполнения медью окна сердечника ;

Принимаем

kм = 0,37

( 1 , ст. 326 )

kс – коэффициент заполнения сталью площади поперечного сечения стержня магнитопровода ;

Принимаем

kс = 0,91

( 1 , ст. 326 )

[pic] - коэффициент полезного действия.

Sст. [pic] Sок. = [pic] 60 см4 ( 1 , ст. 325 )

По найденному произведению Sст. [pic] Sок выбираем из справочных таблиц магнитопровод у которого данное произведение больше или равно расчётному. Для нашего случая ближе всего по характеристикам находится магнитопровод ПЛ 16[pic]32[pic]50 ( 1 , ст. 132 ).

Данные магнитопровода ПЛ 16[pic]32[pic]50

Sст. [pic] Sок. = 64 см4

Sст. = 5,12 см2

Sок. = 12,5 см2

Определяем число витков первичной и вторичной обмоток трансформатора.

W1 = [pic] ( 1 , ст. 326 )

W2 = [pic] ( 1 , ст. 326 )

где

[pic]U – относительное падение напряжения в обмотках , В .

Принимаем :

[pic]U1 = 5 %

( 1 , ст. 327 )

[pic]U2 = 4 %

( 1 , ст. 327 )

В – магнитная индукция , Тл ;

Sст. – площадь стержня магнитопровода , см2 .

W1 = [pic] = 1532 ( витков )

W2 = [pic] = 68 ( витков )

Определяем диаметр проводов обмоток ( без учёта изоляции ( толщины )), мм2

dn = [pic]

( 1 , ст. 326 )

диаметр проводов первичной обмотки , мм2

d1 = [pic] = 0,14 мм2

диаметр проводов вторичной обмотки , мм2 d2 = [pic] = 1,2 мм2

Для вторичной обмотки выбираем наиболее близкое значение диаметра проводов из стандартного ряда :

d2 = 1,3 мм2

Расчёт стабилизатора напряжения блока питания + 5 В .

Исходные данные : входное напряжение :

Uвх = 9 В ;

изменение входного напряжения :

Uвх = [pic] 2 В ;

максимальный ток нагрузки :

Iн max = 3,6 A ;

выходное напряжение :

Uвых. = 5 В

Плавная регулировка напряжения ( выходного ) в пределах от 4 В до 6
В.

В качестве стабилизатора выбираем схему компенсационного транзисторного стабилизатора напряжения последовательного типа.

Стабилизатор состоит из регулирующего элемента( транзисторы ), усилителя постоянного тока , источника опорного напряжения , делителя напряжения и резисторов . Предусмотрена возможность регулировки выходного напряжения - для этого в цепь делителя включён переменный резистор.

Регулирующий элемент состоит из трёх транзисторов . Данное количество выбрано исходя из того , что ток нагрузки превышает 2А ( 1 , ст. 328 ).

Стабилизатор выполнен на транзисторах структуры n = p = n.

Определяем параметры и выбираем транзисторы.

Транзистор VT1

Определяем максимальный ток коллектора :

Iк max = 1,2 [pic] Iн max

( 1 , ст. 329 )

Iк max = 1,2 [pic] 3,6 = 4,3 А

Определяем максимальное напряжение коллектор – эмиттер :

Uк э max = Uвх. + [pic]Uвх. – Uвых.

( 1 , ст. 329 )

Uк э max = 9 + 2 – 5 = 6 В

Определяем предельную рассеиваемую мощность коллектора :

Рк = Uк э max [pic] Iк max

( 1 , ст. 329 )

Рк = 6 [pic] 4,3 = 25,8 Вт

По результатам расчётов выбираем из справочника транзистор VT1 , удовлетворяющий условиям :

Uк э ,1 max [pic] Uк э max

Iк 1 max [pic] Iк max

Pк 1 [pic] Pк

Приведённым условиям удовлетворяет транзистор КТ 805 Б с параметрами :

Рк = 30 Вт

Uк э max = 135 В

Iк max = 5 А

h2 1 э = 15

Iк б 0 = 70 м А

Транзистор VT 2

Максимальный ток коллектора :

Iк max = [pic]

( 1 , ст. 329 )

Iк max = [pic] = 0,3 А

Максимальное напряжение коллектор – эмиттер :

Uк э max = Uвх. +[pic]Uвх. – Uвых.

( 1 , ст.329 )

Uк э max = 9 + 2 – 5 = 6 В

Предельная рассеиваемая мощность коллектора :

Pк = Uк э max [pic] Iк max

Pк = 6 [pic] 0,3 = 1,8 Вт

По результатам расчётов выбираем из справочника транзистор удовлетворяющий условиям , которые указаны в расчётах транзистора VT1.

Приведённым условиям удовлетворяет транзистор КТ 603 А с параметрами:

Pк = 2 Вт

Uк э max = 30 В

Iк max = 0,3 А

h2 1 э = 15

Iк б 0 = 10 м[pic]А

Транзистор VT 3

Максимальный ток коллектора :

Iк max = [pic]

( 1 , ст. 329 )

Iк max = [pic] = 0,02 А

Максимальное напряжение коллектор – эмиттер :

Uк э 3 max = Uк э 2 max

( 1 , ст. 329 )

Uк э 3 max = 6 В

Предельная рассеиваемая мощность коллектора :

Рк = Uк э max [pic] Iк max

Рк = 6 [pic] 0,02 = 0,12 Вт

По результатам расчётов выбираем из справочника транзистор VT3. Расчётным параметрам удовлетворяет транзистор КТ 315 А с параметрами :

Рк max = 0,15 Вт

Uк э max = 25 В

Iк max = 0,1 А

h2 1 э = 20

Iк б 0 = 10 м к А

Транзистор VT 4

Максимальный ток коллектора :

Iк max = 5 [pic] 10-3 А

( 1 , ст. 329 )

Максимальное напряжение коллектор – эмиттер :

Uк э max = Uвых. + [pic]Uвых. – UV D 1

( 1 , ст. 329 )

Uк э max = 5 + 1 – 3 = 3 В

Предельная рассеиваемая мощность коллектора :

Рк max = Iк max [pic] Uк э max

Рк max = 5 [pic] 10-3 [pic] 3 = 1,5

[pic] 10-2 Вт

По результатам расчётов выбираем из справочника транзистор VT 2.
Расчётным параметрам удовлетворяет транзистор КТ 315 Ж с параметрами :

Рк max = 100 мВт

Uк э max = 15 В

Iк max = 5 [pic] 10-2 А

h2 1 э = 30

Выбираем стабилитрон VD 1.

Определяем напряжение стабилизации стабилитрона :

Uст. = Uвых. - [pic]Uвых. – 2

( 1 , ст. 329 )

Uст. = 5 – 1 – 2 = 3 В

По расчитанному напряжению стабилизации выбираем в справочнике стабилитрон наиболее подходящий по параметрам

КС 133 А с параметрами :

Uст. ном. = 3,3 В

Iст. ном. = 0,03 А

Рассчитываем номиналы сопротивлений :

R1 = [pic] кОм

( 1 , ст. 329 )

R1 = [pic] = 0,0225 кОм = 22,5 Ом

Выбираем значение R1 ближайшее из стандартного ряда R1 =24 Ом

R2 = [pic] ( 1

Страницы: 1, 2, 3, 4


ИНТЕРЕСНОЕ



© 2009 Все права защищены.