реферат, рефераты скачать
 

СОИ (стратегическая оборонная инициатива США)


    Лазерные установки наземного базирования с отражательными зеркалами, размещенными в космосе, могут быть также использованы для уничтожения бомбардировщиков и крылатых ракет противника, летящих в плотных слоях атмосферы. Для обеспечения неуязвимости зеркал и сохранения фактора внезапности такие зеркала могут выводиться на свои орбиты непосредственно перед началом боевых действий. Для этого их предполагается размещать в сложенном виде в боеголовках ракет, находящихся в полной готовности к старту.

    Группа американских ученых во главе с участником «Манхэттенского проекта», лауреатом Нобелевской премии Хансом Бете произвела технико-экономическую оценку предлагаемой глобальной лазерной системы. Согласно подсчетам ученых, энергетические затраты, потребные для накачки эксимерных лазеров, превысят мощность 300 электростанций по 1.000 мегаватт каждая, что составит более 60 процентов мощности всех электростанций США. Стоимость только одной такой энергетической системы оценивается более чем в 100 млрд. долларов. Проведенные расчеты отрезвили сторонников глобальной лазерной системы, и основное внимание разработчиков вновь было уделено разработке более реальных проектов.

    Некоторая пауза в проведении работ по созданию и испытанию боевых лазерных систем была обусловлена принятием в 1985 г. конгрессом США десятилетнего моратория на подобные эксперименты. Однако уже в 1996 г. работам над боевыми лазерами был придан новый импульс. В частности, корпорация «Боинг» получила контракт на сумму 1,1 млрд. долларов на создание двух лазерных установок воздушного базирования. В качестве носителя был определен модифицированный «Боинг-747» (программа ABL-Air Borne Laser -лазер воздушного базирования). Этот самолет должен быть оборудован устройством обнаружения летящих ракет противника и наведения на них лазерного излучения. В качестве базового выбран йодисто-кислородный лазер, который будет устанавливаться в носовой части самолета.

    Барражируя на высоте около 12 км в зоне прямой видимости стартующих ракет противника, лазерные «Боинги» должны своевременно обнаружить и поразить ракеты до отделения боеголовок. Предполагается, что в воздухе будут одновременно находиться не менее двух самолетов, в случае появления реальной угрозы в том или ином районе. Для решения этой задачи ВВС США планируют закупить до 2007 г. партию из семи «Боингов» с лазерными установками YAL-1А. Общее руководство НИОКР по созданию лазеров воздушного базирования возложено на Центр космических и ракетных систем ВВС, размещенный на авиабазе Кэртленд.

    Первые испытания нового лазерного оружия в обстановке, близкой к реальной, планируется провести 5 сентября 2003 г. При этом утверждается, что основное предназначение нового оружия связано с его использованием в ПРО театра военных действий. Однако нет сомнений в том, что оно будет обладать определенными возможностями и в борьбе со стратегическими ракетами.

    Последовательность действий лазерной системы ABL должна быть следующей: бортовые инфракрасные датчики в течение нескольких секунд обнаруживают старт ракет противника и осуществляют отслеживание движения ракет, последовательное определение их координат в полете и наведение на них лазерной пушки. После этого производится «выстрел», во время которого в течение нескольких секунд излучение должно удерживаться на корпусе движущейся ракеты. В том случае, если контроль не подтвердит факт уничтожения цели, производится повторный «выстрел». Затем производится перенацеливание лазерной пушки на другие ракеты.

    Специалисты ВВС выдвигают требования к разработчикам с таким расчетом, чтобы установка воздушного базирования была способна произвести не менее 30 «выстрелов», а самолет (с дозоправкой) мог находиться в воздухе 18 часов. Для создания новой системы оружия, которой в Пентагоне придают первостепенное значение, помимо корпорации «Боинг» к работе также привлечены в качестве субподрядчиков компании «Локхид-Мартин» (вспомогательные лазеры «подсветки», системы обнаружения и сопровождения ракет и контроля над поражением) и TRW (боевая лазерная установка).

    По оценкам специалистов США, и некоторые другие новейшие военные технологии, разработанные еще в период работ по программе СОИ, в настоящее время могут быть востребованы для создания противоракетного оружия, обладающего высокими показателями по критерию «стоимость-эффективность». Для сравнения укажем, что стоимость одного кинетического перехватчика составляет несколько сотен тысяч долларов, в то время как затраты на один «выстрел» лазерной установки (правда, без стоимости ее самой) не превышают 3.000 долларов. Командование американских ВВС не скрывает, что использование лазерных систем воздушного базирования открывает большие возможности для борьбы с ракетами как оперативно-тактического, так и стратегического назначения.

    Однако далеко не всегда оптимизм специалистов подтверждается на практике. Сложности реального применения лазерного оружия стали давать о себе знать, когда США приступили к проведению экспериментов - даже с более скромными целями. Известно, что в октябре 1997 г. была предпринята попытка использовать излучение «Миракла» для определения его поражающего действия на оптико-электронную аппаратуру американского военного спутника, находящегося на орбите высотой 412 км. В качестве официальной версии было выдвинуто намерение определить степень уязвимости электронного оборудования спутника от возможного боевого использования лазеров противником. Однако этот эксперимент в силу ряда причин окончился неудачей, что несколько охладило энтузиазм апологетов лазерного оружия, но не убавило у них стремления настойчиво продолжать поиски.

    По заключению экспертов, в США прорабатываются буквально все варианты создания перспективных систем вооружения, включая самые фантастические и кажущиеся бесперспективными большинству «серьезных» ученых. Поэтому, скорее всего, и работы по созданию боевых лазерных систем будут продолжены. [6]



ОПТИЧЕСКИЕ ЛАЗЕРЫ


 Основным преимуществом, оружия использующих в качестве поражающего фактора электромагнитное излучение различных диапазонов спектра: от радиоволн до гамма-излучения, является практически мгновенное достижение цели, т.к. электромагнитное излучение распространяется со скоростью света. Это позволяет наносить удар неожиданно и быстро с большого расстояния. Кроме того, исчезает необходимость в расчете траектории движения цели с целью упреждения ее движения. Появляется принципиальная возможность уничтожать взлетающие МБР на активном (разгонном) участке их траектории в течение первых 5 минут после старта. Именно поэтому лазерным оружием предполагалось оснастить первый эшелон системы ПРО.

 Разрушающее воздействие оптического лазерного излучения основано, прежде всего, на тепловом нагреве ракет (прожигание топливных баков, электроники и систем управления) и действии ударной («шоковой») волны, которая возникает при попадании на поверхность ракеты импульсного лазерного излучения. В последнем случае ударная волна выводит из строя электронику и системы наведения ракеты, а также может повлечь детонацию взрывчатого вещества в боеголовке. Применение пассивных мер защиты (зеркальных и поглощающих покрытий, экранов и т. д.) значительно снижает поражающее воздействие излучения низких энергии, однако, становятся бесполезными при дальнейшем повышении мощности лазерного излучения.

 Идея использовать мощный луч света в качестве оружия восходит еще к Архимеду, но реальную почву эта идея обрела лишь в 1961 г. с появлением первых лазеров. В 1967 г. был разработан первый газодинамический лазер, который продемонстрировал реальность возможности использования лазеров как оружия. Основными его элементами являются: камера сгорания, в которой образуется горячий газ; система сверхзвуковых сопел, после прохождения которых, газ, быстро расширяясь, охлаждается и переходит в состояние с инверсной населенностью энергетических уровней; оптическая полость, где и происходит генерация лазерного излучения. В этой полости перпендикулярно потоку газа расположены два плоских зеркала, образующих оптический резонатор. Для пропускания излучения из полости диаметр одного из зеркал чуть меньше, чем у другого.

 Близки по конструкции к газодинамическому лазеру химический и электроразрядный: в них также через объем резонатора с большой скоростью прокачивается возбужденная рабочая смесь, только источником их возбуждения является соответственно химическая реакция или электрический разряд. Наиболее подходящим для поражения боеголовок в космическом пространстве считается химический лазер на реакции водорода с фтором. Если же в этом лазере вместо водорода использовать его тяжелый изотоп дейтерий, то излучение будет иметь длину волны не 2,7 мкм, а 3,8 мкм, т. е. попадет в «окно прозрачности» земной атмосферы (3,6 - 4 мкм) и сможет почти беспрепятственно достигать земной поверхности.

 Сложную задачу представляет фокусировка лазерного луча на цель.

С точки зрения фокусировки луча более предпочтительными являются оптические и ультрафиолетовые (УФ) лазеры. Наиболее перспективными среди них считают эксимерные лазеры на молекулах фтористого аргона и фтористого криптона. Эти молекулы-эксимеры могут существовать только в возбужденном состоянии: после излучения фотона они разрушаются. Излучение таких лазеров лежит в диапазоне от 2000 до 3000 ангстрем и поэтому земная атмосфера для него непрозрачна. Внешний источник энергии у эксимерных лазеров - электрический разряд, пучок ускоренных электронов, поток нейтронов от ядерного реактора или, возможно, от ядерного взрыва.

 Самым крупным недостатком газовых лазеров всех типов является большое выделение тепла в их рабочем объеме. Это ограничивает повышение мощности на единицу массы таких лазеров. Перспективным в этом отношении считается лазер на свободных электронах, в котором усиление излучения происходит за счет его взаимодействия с пучком электронов, движущихся в периодическом магнитном поле. Можно также использовать такие лазеры как усилители мощности другого лазера, самостоятельных генераторов и умножителей частоты. Поскольку электроны летят в вакууме, не происходит разогрева прибора, как у обычных лазеров. Большим достоинством является также то, что частота генераций у лазера на свободных электронах может перестраиваться в широком спектральном диапазоне от миллиметровой до УФ-области, что делает защиту от излучения большой проблемой.

Идея эта не нова и давно используется в радиотехнике для создания мощных генераторов и усилителей сверхвысокочастотного (СВЧ) диапазона. Относительно высокий ожидаемый коэффициент полезного действия этих усилителей в оптическом и инфракрасном диапазонах длин волн весьма высок - до 30-40 процентов, что по данным американских источников еще до конца столетия позволит получить лазерное излучение мощностью до 100 мегаватт.

Стремление использовать в лазерном оружии коротковолновое излучение, связано с тем, что оно хорошо поглощается любыми материалами. Например, титановое покрытие почти полностью отражает ИК-излучение, но поглощает УФ. Однако УФ-лазеры тяжелы и требуют громоздких источников энергии.

РЕНТГЕНОВСКИЕ ЛАЗЕРЫ


 Особую роль в планах «звездных войн» играет проект рентгеновского лазера с накачкой энергией от ядерного взрыва. Вообще идея рентгеновских и гамма-лазеров давно привлекает внимание ученых. Применение таких лазеров даст человечеству большие возможности: как источники когерентных воли они приведут к рождению рентгеновской или гамма-голографии (молекулярной голографии), позволят расшифровать объемную структуру молекул и атомов. Возможность воздействовать на атомы и их ядра строго дозированными порциями энергии - квантами позволит изучать и направленным образом изменять структуру атомных ядер. Тщательно подобрав частоту излучения, можно раскачивать и разрывать определенные связи в ядре и осуществлять, таким образом, самые экзотические ядерные превращения. Ту роль, которую играют сейчас оптические лазеры в области управления химическими реакциями, рентгеновские и гамма-лазеры будут играть в сфере ядерных превращений. Впрочем, они найдут применение и в хирургии, и в спутниковой связи, и в других областях народного хозяйства. Поэтому уже более 20 лет продолжаются попытки создать рентгеновский лазер, используя, разумеется, не разрушительную энергию ядерного взрыва, а контролируемые источники (например, обычные оптические лазеры).

 В 1984 г. в США был произведен эксперимент по генерации лазерного рентгеновского излучения в газовой среде с использованием в качестве источника накачки мощного двухлучевого оптического лазера «Наветт» (Ливерморская национальная лаборатория), каждый луч которого, имел плотность мощности 5E13 Вт/кв. см в импульсе длительностью 4,5E-10 с.

 В фокусе лазера помещалась мишень - тончайшая пленка размером 0,1 х 1,1 см из селена или иттрия. Луч испарял мишень, создавая плазму из ионов этих металлов. Столкновения с электронами в плазме вызывали возбуждение ионов, которое приводило к вынужденному излучению на частотах около 200 ангстрем. Наличие лазерного эффекта подтверждалось тем, что излучение, скажем, селеновой плазмы по интенсивности превышало примерно в 700 раз ожидаемое ее спонтанное излучение. По сообщению специалистов Ливерморской группы, планируется дальнейшее продвижение в область жесткого рентгена: так, излучение неоноподобных ионов молибдена даст лазерный эффект на 100 ангстрем, а использование новых лазеров накачки позволит уменьшить длину волны излучения до 50 ангстрем.

 В том же 1984 г. сотрудникам Принстонской лаборатории физики плазмы (США) с помощью мощного инфракрасного лазера на молекулах СО2 удалось получить лазерный эффект в углеродной плазме на волне 182 ангстрем. Их лазер накачки имел импульсную мощность порядка 10-20 гигаватт. Его пучок фокусировался в пятно диаметром 0,2- 0,4 мм, что позволяло достигать плотности мощности 1E13 Вт/см кв. Руководитель Принстонской группы С. Сакьюэр также надеется продвинуться в область более коротких волн, используя литиеподобные ионы неона. Интересно, что в этих экспериментах впервые использовалось для увеличения коэффициента лазерного усиления рентгеновское зеркало, изготовленное Т. Барбив в Стэнфордском университете (США). Это параболическое зеркало с радиусом кривизны 2 м состоит из чередующихся слоев молибдена толщиной 35 ангстрем и кремния толщиной 60 ангстрем. Хотя каждый молибденовый слой довольно слабо отражает рентгеновские лучи, но отраженные от последовательных слоев лучи вкладываются, интерферируют и усиливаются, так что полный коэффициент отражения такого многослойного зеркала составляет 70%.

 В 1986 г., полностью ионизировав в фокусе мощного лазера атомы фтора, исследователи получили лазерное излучение с длиной волны 80 ангстрем. Дальнейшее существенное уменьшение длины волны (а оно необходимо для уменьшения расходимости пучка у боевого лазера) требует таких огромных плотностей энергии накачки, которые достигаются только при взрывах ядерных зарядов. Работы в этом направлении с целью создать боевой рентгеновский лазер ведутся в Ливерморской лаборатории под руководством «отца американской водородной бомбы» Эдуарда Теллера. Испытания проводятся во время подземных ядерных взрывов на полигоне в штате Невада. В 1981 г. было опубликовано неофициальное сообщение об измеренных во время эксперимента характеристиках лазерного излучения: длина волны 14 ангстрем, длительность импульса порядка 1E-9 с, энергия в импульсе около 100 кДж. Детально конструкция лазера не описывалась, но известно, что его рабочим телом являются тонкие металлические стержни.

 Для поражения межконтинентальной баллистической ракеты, т.е. для получения плотности энергии, скажем, 10 кДж/кв. см на расстоянии 1000 км при расходимости луча 1E-5, в импульсе такого лазера должна быть энергия около 1E10 Дж. При внутреннем КПД рентгеновского лазера, составляющем по довольно оптимистичным оценкам 10% и при расстоянии стержня (точнее было бы называть его струной) от ядерного заряда около 1 м мощность заряда должна быть примерно 1E15 Дж, или 200 кт тротилового эквивалента. По другим расчетам, для обеспечения дальности поражения МБР на расстоянии 2000 км потребуется ядерный заряд мощностью 50 кт, а число стержней составит 1E5 Не исключена также возможность создания некоего концентратора энергии взрыва на одной струне, используя эффект отражения рентгеновских лучей от кристаллов при косом падении.

 По-видимому, принципиальных ограничений на создание рентгеновского лазера с ядерной накачкой нет. Он обещает стать очень компактным прибором (с вероятной массой около 1 т), доступным для вывода в космос одной ракетой, что сделает его малоуязвимым оружием.


ЭЛЕКТРОМАГНИТНЫЕ ПУШКИ


 Их называют также оружием высокой кинетической энергии, или электродинамическими ускорителями массы. Заметим сразу, что они интересуют не только военных. Созданы проекты по осуществлению с помощью электромагнитных пушек (ЭП) выброса радиоактивных отходов с Земли за пределы Солнечной системы, транспортировки с поверхности Луны материалов для космического строительства, запуска межпланетных и межзвездных зондов. Предварительные подсчеты показывают, что доставка грузов в космос с помощью ЭП обойдется в 10 раз дешевле, чем с помощью «шаттла» (300 долл. за 1 кг, .а не 3000 долл., как у «шаттла»).

 В рамках СОИ предполагается использовать ЭП для запуска баллистических (неуправляемых) или самонаводящихся снарядов для поражения взлетающих МБР (возможно, еще в верхних слоях атмосферы) и боеголовок вдоль всей траектории их полета.

 Идея использования ЭП восходит еще к началу нашего века. В 1916 г. была первая попытка создать ЭП, надевая на ствол орудия обмотки из провода, по которым пропускался ток. Снаряд под действием магнитного поля последовательно втягивался в катушки, получал ускорение и вылетал из ствола. В этих экспериментах снаряды массой 50 г удавалось разогнать до скорости только 200 м/с. С 1978 г. в США была начата программа создания ЭП в качестве тактического оружия, а в 1983 г. она была расширена для создания стратегических средств ПРО.

 Обычно в качестве космической ЭП рассматривается, так называемый, «рельсотрон» - две токопроводящие шины, между которыми создается разность потенциалов. Токопроводящий снаряд (или его часть, например, облачко плазмы в хвостовой части снаряда) располагается между рельсами и замыкает электрическую цепь. Ток создает магнитное поле, взаимодействуя с которым, снаряд ускоряется силой Лоренца. При токе  несколько миллионов ампер можно создать поле в сотни килогаусс, которое способно разгонять снаряды с ускорением до 1E5 g. Чтобы снаряд приобрел необходимую скорость 10-40 км/с, потребуется электромагнитная пушка длиной 100-300 м. Снаряды у таких орудий, вероятно, будут иметь массу около 1 кг (при скорости 20 км/с запас его кинетической энергии эквивалентен взрыву 20 кг тротила) и будут снабжены полуактивной системой самонаведения. Прототипы таких снарядов уже созданы: они имеют ИК-датчики, реагирующие на факел ракеты или на излучение «подсвечивающего» лазера, отраженное от боеголовки. Эти датчики управляют реактивными двигателями, позволяющими снаряду маневрировать. Вся система выдерживает перегрузки до 1E5 g.

 Токопроводящая часть снаряда вследствие протекания через нее больших токов должна расплавиться, испариться и частично превратиться в плазму. Такое плазменное облако становится своеобразным поршнем для снаряда, при этом снаряд  должен быть электрически изолирован от плазмы. В последнее время рассматриваются возможности изготовления снарядов для рельсотрона из пластика.

Созданные сейчас американскими фирмами опытные образцы ЭП стреляют снарядами массой 2-10 г со скоростью 5-10 км/с. Одной из важнейших проблем при создании ЭП является разработка мощного импульсного источника тока, в качестве которого обычно рассматривается униполярный генератор (ротор, разгоняемый турбиной до нескольких тысяч оборотов в минуту, с которого путем короткого замыкания снимается огромная пиковая мощность). Сейчас созданы униполярные генераторы с энергоемкостью до 10 Дж на 1 г собственной массы. При их использовании в составе ЭП масса энергоблока будет достигать сотни тонн. Как и для газовых лазеров, большую проблему для ЭП представляет рассеяние тепловой энергии в элементах самого устройства. При современной технике исполнения КПД ЭП вряд ли будет превышать 20%, а значит, большая часть энергии выстрела будет уходить на разогрев орудия. Можно не сомневаться, что прекрасные перспективы для разработчиков ЭП открывает недавнее создание высокотемпературных сверхпроводников. Использование этих материалов, вероятно, приведет к значительному улучшению характеристик ЭП.


РАКЕТЫ-ПЕРЕХВАТЧИЧИКИ


 Хотя с первого взгляда кажется, что стратегия «звездных войн» полностью основана на новых технических принципах, но это не так. Большие средства (примерно 1/3 всех ассигнований) тратятся на развитие традиционных средств ПРО, т. е. на разработку ракет-перехватчиков, или, как их еще называют, противоракет. В связи с прогрессом электроники и улучшением системы управления ПРО противоракеты теперь все чаще снабжаются неядерными боеголовками, поражающими ракету противника путем прямого соударения с ней. Чтобы повысить вероятность поражения цели, такие ракеты снабжены специальным поражающим элементом зонтичного типа, который представляет собой раскрывающуюся конструкцию диаметром 5-10 м из упругих металлических лент или сетки.

 Для защиты важных наземных объектов созданы противоракетные комплексы, задачей которых является уничтожение боеголовок на конечном участке траектории, в верхних слоях атмосферы. Иногда их боеголовки снабжают взрывчатым зарядом осколочного типа, создающим облако поражающих элементов наподобие картечи. В связи с появлением боеголовок, способных маневрировать в атмосфере, не отказываются и от применения ядерных зарядов. Для защиты шахтных пусковых установок МБР существуют артиллерийские и ракетные системы залпового огня, выстреливающие на высоту несколько километров над землей плотную завесу из стальных кубиков или шариков, которые поражают боеголовку при столкновении с ней.

 Планы СОИ предполагают размещение ракет-перехватчиков на орбитальных платформах для борьбы с ракетами и боеголовками вдоль всей надатмосферной части их траектории. По всей видимости, именно антиракеты космического базирования станут первым реально развернутым в космосе элементом стратегической ПРО. С этой целью в США разрабатываются малогабаритные орбитальные спутники-перехватчики «Бриллиант Пеблз» («бриллиантовые камешки»), масса которых не будет превышать 100 кг.

Страницы: 1, 2, 3, 4, 5, 6


ИНТЕРЕСНОЕ



© 2009 Все права защищены.