реферат, рефераты скачать
 

Телевидение


120

98


0,45

100

100

600

550

47 ЛК 2Б

384

305

1219

0,46

120

100

600

550

59 ЛК 3Б

489

385

1012

0,42

120

150

600

550

65 ЛК 1Б

530

416

1219

0,39

150

150

600

550


Добавим  некоторые технические подробности для трубки 59 ЛК 3Б (размер диагонали 59 см). Длина трубки 370 мм, вес – 16 кг, угол отклонения - 110°, ток пучка – 350 мкА, запирающее напряжение модулятора ~ 80В, размах сигнала в цепи модулятора ~45В, напряжение анода ~ 20кВ.


5.5. Трехлучевой цветной кинескоп

 

Цветной кинескоп позволяет воспроизводить цветное изображение. Существует несколько разновидностей цветных кинескопов

D – видный кинескоп – наиболее распространенный в настоящее время кинескоп (рис.5.12). Он содержит 3 прожектора (1), которые расположены в вершинах треугольника (отсюда название), а также трехцветный точечный (мозаичный) экран 3 и теневую маску 2. Для создания цветного изображения используется метод пространственного смешения цветов.

Элементами экрана 3 служат триады кружков (Æ 0,45 мм) люминофоров, свечение которых соответствует основным цветам: красному (R), зеленому (G) и синему (B), предназначенных для синтеза элемента изображения любого цвета. Из-за малости размера триады глаз воспринимает результирующий цвет в соответствии со степенью возбуждения каждого из люминофоров. Число триад на экране соответствует числу элементов разложения (номинальному).

Перед экраном на расстоянии ~ 12 мм расположена металлическая (сталь) маска 2 с отверстиями, которые расположены напротив каждой триады. Маска сферическая, толщина 0,15 мм, диаметр отверстий 0,3 мм. Маска обеспечивает попадание каждого луча на «свой» люминофор, что позволяет обеспечить независимое возбуждение люминофоров в триаде. Существенно, что маска формирует из каждого пучка электронов достаточно узкий электронный луч, диаметром не больше кружка люминофора. Поскольку формирование происходит за счет вырезания части пучка (диафрагмирование), это резко уменьшает полезный ток луча и снижает светоотдачу. Прожекторы 1 расположены в горловине трубки в вершинах равностороннего треугольника. Оси прожекторов составляют с осью трубки угол ~ 1°. Лучи сходятся в плоскости теневой маски 2, проходят через отверстия, затем опять расходятся по вершинам триады.

На горловине колбы находятся также внешние узлы: отклоняющая (развертывающая) система 4, регулятор радиального сведения лучей 5, магнит чистоты цвета 6 и магнит синего луча 7.

Отклоняющая система разворачивает одновременно все три пучка.

Регулятор радиального сведения лучей 5 предназначен для статического (в центре экрана) и динамического (по полю изображения) сведения лучей. Он состоит из внешних магнитов Мсв, работающих совместно с полюсными наконечниками 8, расположенными внутри колбы. Магнит Мсв намагничен по диаметру, поэтому в зависимости от его углового положения между полюсными наконечниками создается поперечное магнитное поле различной величины, которое и «подворачивает» электронный пучок в радиальном направлении. Совместной регулировкой магнитов Мсв добиваются статического сведения пучков.

Из-за неточности сборки трубки может возникнуть необходимость смещения одного из лучей в тангенциальном направлении. Для этого перемещают «синий» луч магнитом 7. Поле этого магнита направлено вдоль радиуса колбы, поэтому синий луч смещается по окружности.

Статическое сведение лучей в центре экрана не обеспечивает их совпадения в отверстиях маски, удаленных от центра. Для динамического сведения служат катушки К1 и К2 электромагнитов радиального сведения, через которые пропускаются токи специально подобранной формы, которые меняются одновременно с отклоняющими токами. Экраны 9 сделаны для автономизации регулировки пучков.

Из-за неточной сборки кинескопа в целом может возникнуть необходимость сведения геометрических осей электронных прожекторов с осью кинескопа. Для этого используется кольцевой магнит 6 (намагничен по диаметру).

Каждый из трех прожекторов имеет раздельные выводы катодов, модуляторов, ускоряющих и фокусирующих электродов. Теневая маска соединена гальванически со вторым анодом А.

Для трубки 61 ЛК 4Ц (типичный кинескоп для цветных телевизоров):

-    отрицательное напряжение, запирающее луч – (100¸190) В;

-    ускоряющее напряжение (250¸750) В;

-    фокусирующее напряжение (4,7¸5,5) кВ;

-    полное ускоряющее напряжение ~ 25 кВ

Яркость экрана в белых местах ³ 110 кд/м2, разрешение 550 мм по вертикали и 450 – по горизонтали. Контраст ³ 120, число градаций яркости ³ 8, gкин = 2,6 ¸ 3,3, наработка на отказ ³ 104 час.

В масочных трубках подобного типа 80% тока каждого из пучков задерживается маской, что ведет к уменьшению яркости. Для достижения желаемой яркости приходится увеличивать токи лучей до 1,5 мА и повышать ускоряющий потенциал до 25 кВ. При этом появляется рентгеновское излучение, для уменьшения которого используют тяжелое стекло для колбы (добавки Pb, Sr90).

Наличие трех независимых прожекторов приводит к проблеме получения белого во всех диапазонах яркостей. Причина этого – разброс модуляционных характеристик каждого из прожекторов (рис. 5.13).

Для подгонки яркостей («баланс белого») меняют ускоряющие напряжения лучей, чтобы совместить напряжения отсечки. Однако, этого мало – наклоны модуляционных характеристик разные, поэтому регулируют также коэффициенты усиления усилителей яркостных сигналов.

Цветной кинескоп с линейным расположением прожекторов.

Недостаточная яркость экрана, сложность настройки, сложная технология вынудили искать другие варианты конструкций кинескопов. Один из них – линейное (планарное) расположение электронных прожекторов.

Экран имеет штриховую структуру в виде тонких вертикальных полосок чередующихся люминофоров R, G, B. Перед экраном находится металлическая цветоделительная маска с вертикальными щелями и горизонтальными перемычками (для прочности).

Пучок зеленого прожектора направлен по оси кинескопа и создает симметричный растр, не нуждающийся в сведении. Прожекторы R и B расположены симметрично относительно прожектора G и находятся с ним в одной плоскости («планарность»). Симметрия дает возможность иметь одинаковые искажения, что упрощает сведение лучей в динамике.

Яркость свечения здесь выше, чем в мозаичных кинескопах, т.е. щелевая маска более прозрачна, чем маска с круглыми отверстиями. Сдвиг любого пучка в вертикальном направлении не вызывает искажений, т.к. пучки не сходят со «своих» полосок люминофоров.

Планарные кинескопы позволяют делать системы самосведения пучков, что невозможно в мозаичном. Для этого подбирают форму отклоняющих катушек и плотность витков в них так, что катушка горизонтального отклонения создает «подушку», а вертикального – «бочку». После настройки катушки приклеивают к колбе.

Такие кинескопы выпускаются с углом отклонения 90° и 110°. Например, кинескоп 32 ЛК 1Ц: запирающее напряжение – (50¸100) В, фокусирующее напряжение (2,5¸5,5) кВ, ускоряющий потенциал 18 кВ. Яркость – 150 кд/м2, неравномерность £ 40% по полю изображения, контраст ³ 60, разрешение составляет 350´350.

Другая модель планарного цветного кинескопа (51 ЛК 2Ц) обеспечивает яркость в белом до 250 кд/м2 при токе катодов ~ 1мА, напряжении анода 25кВ. Разрешение достигает 450х450 элементов.

Упомянем еще одну разновидность цветного кинескопа – однолучевой хроматрон. Экран трубки имеет линейчатую структуру перемежающихся люминофоров, перед которыми располагается цветокоммутирующая сетка (рис. 5.14). Полоски люминофора располагаются вертикально в последовательности RGBGRGBGRGBG… Ширина полосок R и В составляет 0,2 мм, полоска G имеет ширину 0,1 мм. Один элемент цветного изображения образует RGBG.

Экран трубки алюминирован и соединен с анодом, находящемся под напряжением 15 кВ относительно катода. Перед экраном на расстоянии 20 мм натянуты вертикальные проволочные струны Æ 0,036 мм с шагом 0,3 мм, так что нечетные струны помещены перед полосками красного люминофора, а четные – перед синими. Все четные струны соединены вместе (один вывод цветокоммутирующей сетки), а все нечетные также соединены и имеют вывод. Если напряжение на секциях сетки одинаковые (слабо отрицательные), то электронный луч прожектора проходит между струнами и попадает на зеленый люминофор (рис. 5.14), а при некотором напряжении в зависимости его знака луч попадает либо на красный, либо на синий люминофор. Сетка в целом имеет довольно большую емкость, поэтому в течение одной строки потенциал сетки не меняется, а меняется лишь один раз за три строки растра, т.е. образуются последовательно три строки одинакового цвета (интенсивность каждой из них зависит от сигнала на модуляторе) – красная, зеленая, синяя. Получается пространственное смешение цветов, но с потерей цветовой четкости в 3 раза. При количестве струн 400 горизонтальная четкость составляет ~ 300 строк.

Подобный кинескоп (хроматрон 25 ЛК 1Ц) при яркости 200 кд/м2 требует ток луча 200 мкА, ускоряющий потенциал равен 5 кВ. Потенциал коммутационной сетки ±200 В, что при частоте коммутации 15 кГц : 3 = 5 кГц требует мощности 1 Вт.







































 




















































 






















































































































 































6. ХАРАКТЕРИСТИКИ ТЕЛЕВИЗИОННОГО СИГНАЛА


6.1. Пространственные частоты изображения

 

Для детального рассмотрения телевизионного сигнала, в частности, его важнейшей характеристики – спектрального состава – обычно используется спектральный анализ. Целесообразность такого подхода объясняется тем, что исходное оптическое изображение представляет собой поле освещенности, распределенное по плоскости. Пространственное представление этого поля, в том числе и в виде рядов Фурье, имеет более универсальный смысл, чем временное представление. Это легко видно, например, из того факта, что неизбежное наличие пространственных апертур в любой телевизионной системе, даже в случае отсутствия перемещающихся апертур, сказывается на разрешении, частотном диапазоне сигнала и т.д. Для многопроводной системы, где нет временной развертки, пространственная апертура определяется наличием ячеек в светочувствительной матрице на передающей стороне и воспроизводящей матрице на приемной.

Второе замечание связано с тем, что разложение в ряды Фурье производится только для периодических функций, т.е. строго говоря, суммой членов ряда можно заменить только бесконечно повторяющуюся последовательность неизменных изображений, полностью идентичных мгновенному изображению кадра. В действительности этого нет, однако учитывая достаточно низкие частоты пространственных изменений в передаваемой сцене, которые могут восприниматься зрительно-аналитической системой человека (2¸5Гц), можно по крайней мере несколько кадров (~ 5) считать принципиально неизменными. Именно на этом основан используемый ниже подход, который исходит из считывания бесконечно-длинной пространственной картины, имеющей пространственный период, равный длине кадра b, на которую наложена вертикальная последовательность с длиной волны h.

Итак, рассмотрим неподвижное бесконечно повторяющееся изображение, один из фрагментов которого (кадр) показан на рис. 6.1. в виде поля освещенности E (x, y).

Вдоль прямой, проходящей через точку (x, y) и параллельной оси х, любая функция оптической неоднородности может быть записана через ряд Фурье:

,

где lm – длина m-ой пространственной волны в направлении х,

      jm – фаза m-ой слагаемой ряда,

       Еу – текущая амплитуда m-ой составляющей, т.к. она зависит от координаты у.

На длине экрана b укладывается «m» пространственных длин волн освещенности (яркости), потому что мерой взяли величину b, т.е. lm× m = b. Тогда можно записать:

.

Ясно, что m слева равно 0, а справа равно ¥, т.е. не ограничено.

Величина Em(y) сама может быть разложена в ряд по координате у:

,

где ln =  – пространственная длина волны яркости в направлении у,

      E²mn – амплитуда n-го компонента по высоте (в направлении у),

      jn – фаза этого компонента.

Подставим:

,

где      .

Т.к. при фиксированном m слагаемые, содержащие n в аргументе первой косинусоидальной зависимости в последнем выражении меняются от 0 до + ¥ , а в аргументе второй -  от 0 до -¥, то их можно объединить в одну косинусоидальную последовательность с пределами суммирования от - ¥ до +¥. Фаза тоже будет суммарной: jmn = jm + jn (с учетом того, что в ряде, где - ¥ £ n £ 0 она вычитается из jm, но cos – четная функция). Тогда:

,

или в комплексной форме  :

,

где     .

Видно, что здесь в первый ряд суммируется в пределах - ¥ £ m £ ¥.

Таким образом, любое изображение может быть представлено в виде суммы косинусоидальных волн с - ¥ £ m =  £ ¥ и - ¥ £ n =  £ ¥. Содержание изображения определяет амплитуды Emn и фазы jmn компонентов ряда.


6.2. Пространственная фильтрация изображения

(фильтрация пространственного спектра изображения)


Поскольку в электрический сигнал преобразуется световой поток, проходящий через весь элемент разложения (или отраженный от всего элемента изображения), то полезно ввести функцию прозрачности апертуры, которая учитывает количество проходящего через него света. Именно этот свет и образует сигнал.

Для квадратной апертуры (диск Нипкова, приборы с зарядовой связью ПЗС) прозрачность равномерна по всей площади апертуры: r(x¢, y¢) = 1 (рис. 6.2, а). Это же справедливо для круглых отверстий (диссектор) в пределах площади этого отверстия DS:

,

где x¢, y¢ – координаты точек апертуры относительно ее центра 0¢ (рис. 6.2, б).

Для электронного коммутирующего пучка прозрачность эквивалентна плотности электронного пучка, распределение которой описывается гауссовым законом (рис. 6.2, в):

Здесь re – условный радиус, где плотность электронов падает в «е» раз.

 В действительности прозрачность ячейки ПЗС скорее можно считать не кубом, а трапециоидальным параллелепипедом (усеченная пирамида) (рис.6.2,г).

В принципе следует говорить об интегральной прозрачности всей апертуры (объем прозрачности):

.

потому что в линейном фотоэлектрическом преобразователе через апертуру проходит световой поток

.

где x, y – координаты центра апертуры.

Если спектральная чувствительность фотослоя одинакова по всей площади апертуры DS, то ток сигнала:

,

Если освещенность изображения в пределах площади DS постоянна и равна Ео, то .

Передача границы освещенности. Пусть освещенность Е меняется скачком от 0 до Ео. Тогда текущее значение сигнала (текущей координатой является х):

,

где  – объем прозрачности освещенной части апертуры.

Вводят понятие переходной апертурной характеристики, которая определяется отношением текущих значений сигнала (или прозрачности) к их установившимся (предельным) значениям. Это отношение меняется с изменением координаты центра апертуры:

.

Рассмотрим случай, когда в т. х=0 освещенность меняется скачком от 0 до Ео (рис.6.3, а). Возьмем сечение апертуры на расстоянии х¢ от ее центра (щель с размерами 2rx¢ dx¢). Тогда прозрачность:

.

Для симметричного распределения:

.

Например, пусть апертура – квадрат d´d. d×dx¢ – щель с размерами d, dx¢. Тогда (рис. 6.3,б)

.

Установившееся значение прозрачности ro = d 2, поэтому

.

Видно, что переходная характеристика для прямоугольной апертуры, перемещающейся так, что ее сторона остается параллельной границе освещенности, имеет линейный характер (рис. 6.4, а).

При любой другой ориентации прямоугольной апертуры характеристика будет нелинейной. Для круглой апертуры диаметром d апертурная переходная характеристика (рис. 6.4, б):

.

Характеристика в т.О имеет максимальную скорость нарастания, т.к. она пропорциональна текущей длине хорды апертуры.

Если  в телевизионной системе есть две сканирующих системы - передающая и воспроизводящая, то результирующая переходная характеристика станет еще хуже.

Таким образом, бесконечно узкая граница двух разных по оптической плотности (яркости, освещенности) областей изображения, т.е. скачок освещенности DЕ, растягивается по меньшей мере на размер апертуры, т.е. ухудшается четкость. В этом смысле апертурные искажения по своим результатам подобны расфокусированию изображения из-за объектива.

Если прозрачность распределена по Гауссу, то (кривая 6.4, в):

Для этого случая H(x) простирается в обе стороны бесконечно, однако за границы переходного процесса принимают 2re (0,08 и 0,92 от rо).

Если есть две одинаковые гауссовы апертуры, то получается в итоге как бы одна характеристика с гауссовым законом (кривая 5) и условным радиусом rs = re. Соответственно, в   раз увеличивается и протяженность переходной кривой:

.

Апертурно-частотная фильтрация. Ясно, что при увеличении протяженности границ переходов освещенности должна меняться также частотная пространственная характеристика изображения. Грубо говоря, если мы ощупываем пространственный рельеф каким-то «толстым щупом», то верхние частоты (мелкие детали изображения) будут теряться. Для аналитической записи этого факта рассмотрим пространственное поле, которое зависит от одной координаты х:

.

Здесь выделена нулевая частотная составляющая (средняя или постоянная освещенность Ео) гармонического разложения и она вынесена за знак суммирования, т.е. на нее разделены амплитуды всех гармоник, так что:

  - глубина модуляции m-го компонента (амплитуда m-го компонента относительно постоянной составляющей).

Подобно рассмотренному ранее, можно показать, что считанный сигнал

.

Сомножитель U/m определяет апертурно-частотную характеристику сканирующего устройства. Для примера рассмотрим апертурно-частотную характеристику для квадратной апертуры d´d. Обычно берут не U/m, а Um, который отличается другим направлением х, т.е. . Тогда для квадратной апертуры

 - кривая 1 (рис. 6.5).

Для гауссовой апертуры:

         (кривая 2).

Кривая 1 пересекает ось абсцисс при целочисленных d/lm, убывая по амплитуде. Кривая 2 оси абсцисс не пересекает. Физически это связано с тем, что «щуп» в виде электронного пучка с плотностью электронов по закону Гаусса не имеет плоской части и есть «еще более острая часть», которая ощущает все более и более мелкие детали.

Понятно, что идеальное значение Um – горизонтальная прямая с ординатой 1,0. При двух диафрагмах (передача-прием) апертурно-частотная характеристика определяется квадратом Um. Если есть две апертуры, то получается кривая 3, если две гауссовых – кривая 4.

Можно утверждать, что конечные размеры апертур срезают часть верхних пространственных частот, т.е. число компонентов пространственного спектра ограничено заданной глубиной модуляции. Это эквивалентно тому, что введение апертуры создает фильтр пространственной частоты.

В любом случае, как говорилось, это дает уменьшение четкости изображений, что можно выразить количественно.

Разрешающая способность телевизионной системы оценивается количеством полупериодов  пространственной частоты, воспроизводимой с глубиной модуляции, большей чем порог (отсчетный уровень) Dо (см. рис. 6.5).

Страницы: 1, 2, 3, 4


ИНТЕРЕСНОЕ



© 2009 Все права защищены.