реферат, рефераты скачать
 

Основы теории систем и системный анализ (лекции)




                        Матрица исходных данных   E[n·k]                  {3-26}

E 11

E12

E1i

E1k

E 21

E22

E2i

E2k

E j1

Ej2

Eji

Ejk

E n1

En2

Eni

Enk


         Пусть мы предполагаем, что на эффективность системы влияют и другие — ненаблюдаемые, но легко интерпретируемые (объяснимые по смыслу, причине и механизму влияния) величины — факторы.   

         Сразу же сообразим, что чем больше n и чем меньше таких число факторов m (а может их и нет вообще!), тем больше надежда оценить их влияние на интересующий нас показатель E.

         Столь же легко понять необходимость условия   m < k, объяснимого на простом примере аналогии — если мы исследуем некоторые предметы с использованием всех 5 человеческих чувств, то наивно надеяться на обнаружение более пяти “новых”, легко объяснимых, но неизмеряемых признаков у таких предметов, даже если мы “испытаем” очень большое их количество.

         Вернемся к исходной матрице наблюдений E[n·k] и отметим, что перед нами, по сути дела, совокупности  по n наблюдений над  каждой из k  случайными величинами  E1, E2, … E k.  Именно эти величины “подозреваются” в связях друг с другом — или во взаимной коррелированности.

         Из рассмотренного ранее метода оценок таких связей следует, что мерой разброса  случайной величины E i  служит ее дисперсия, определяемая суммой квадратов всех зарегистрированных значений этой величины S(Eij)2 и ее средним значением (суммирование ведется по столбцу).

         Если мы применим замену переменных в исходной матрице наблюдений, т.е. вместо Ei j  будем использовать случайные величины


          Xij = ,                                                                         {3-27}


то мы  преобразуем исходную матрицу в новую


         X[n·k]                                                                                           {3-28}

X 11

X12

X1i

X1k

X 21

X22

X2i

X2k

X j1

Xj2

Xji

Xjk

X n1

Xn2

Xni

Xnk



         Отметим, что все элементы новой матрицы X[n·k] окажутся безразмерными, нормированными величинами и, если некоторое значение Xij составит, к примеру, +2, то это будет означать только одно - в строке j наблюдается отклонение от среднего  по столбцу  i  на два среднеквадратичных отклонения (в большую сторону).

         Выполним теперь следующие операции.

         · Просуммируем квадраты всех значений столбца 1 и разделим результат на (n - 1) —   мы получим  дисперсию (меру разброса) случайной величины X1 , т.е. D1. Повторяя эту операцию, мы найдем таким же образом дисперсии всех наблюдаемых (но уже нормированных) величин.

         · Просуммируем произведения соответствующих строк (от j =1 до j = n) для столбцов 1,2  и  также разделим на (n -1). То, что мы теперь получим, называется  ковариацией C12 случайных величин X1 ,  X2  и служит мерой их статистической связи.

         · Если мы повторим предыдущую процедуру для всех пар столбцов, то в результате получим еще одну, квадратную  матрицу C[k·k],  которую принято называть ковариационной.

         Эта  матрица имеет на главной диагонали дисперсии случайных величин Xi, а в качестве остальных элементов — ковариации этих величин  ( i =1…k).

Ковариационная матрица C[k·k]                                               {3-29}

D1

C12

C13

C1k

C21

D2

C23

C2k

Cj1

Cj2

Cji

Cjk

Cn1

Cn2

Cni

Dk


Если вспомнить, что связи случайных величин можно описывать не только ковариациями, но и коэффициентами корреляции, то в соответствие матрице {3-29} можно поставить матрицу парных коэффициентов корреляции или  корреляционную матрицу


R [k·k]                                                                                             {3-30}


1

R12

R13

R1k

R21

1

R23

R2k

Rj1

Rj2

Rji

Rjk

Rn1

Rn2

Rni

1

в  которой  на диагонали находятся 1, а внедиагональные элементы являются обычными коэффициентами парной корреляции.

Так вот, пусть мы полагали наблюдаемые переменные Ei независящими друг от друга, т.е. ожидали увидеть матрицу R[k·k] диагональной, с единицами в главной диагонали и нулями в остальных местах. Если теперь это не так, то наши догадки о наличии латентных факторов в какой-то мере получили подтверждение.

Но как убедиться в своей правоте, оценить достоверность нашей гипотезы — о наличии хотя бы одного латентного фактора,  как оценить степень его влияния на основные (наблюдаемые) переменные?  А если, тем более, таких факторов несколько — то как их проранжировать по степени влияния?

Ответы на такие практические вопросы призван давать факторный анализ. В его основе лежит все тот же “вездесущий” метод статистического моделирования (по образному выражению В.В.Налимова — модель вместо теории).

Дальнейший ход анализа при  выяснению таких вопросов зависит от того, какой из матриц мы будем пользоваться. Если матрицей ковариаций C[k·k], то мы имеем дело с методом главных компонент, если же мы пользуемся  только матрицей  R[k·k], то мы используем метод факторного анализа в его “чистом” виде.

Остается разобраться в главном — что позволяют оба эти метода, в чем их различие и как ими пользоваться. Назначение обоих методов одно и то же — установить сам факт наличия латентных переменных  (факторов), и если они обнаружены, то получить количественное описание их влияния на основные переменные Ei.

Ход рассуждений при выполнении поиска главных компонент заключается в следующем. Мы предполагаем наличие некоррели-рованных переменных  Zj ( j=1…k), каждая из которых представляется нам комбинацией основных переменных (суммирование по i =1…k):

Zj = S Aj i ·X i                                                                                                                       {3-31}

и, кроме того, обладает дисперсией, такой что

 D(Z1) ³ D(Z2) ³³ D(Zk).

Поиск коэффициентов Aj i (их называют весом  j-й компонеты в содержании i-й переменной) сводится к решению матричных уравнений и не представляет особой сложности при использовании компьютерных программ. Но суть метода весьма интересна и на ней стоит задержаться.

Как известно из векторной алгебры, диагональная матрица [2·2] может рассматриваться как описание 2-х точек (точнее — вектора) в двумерном пространстве, а такая же матрица размером [k·k]—  как описание k точек  k-мерного пространства.

Так вот, замена реальных, хотя и нормированных переменных Xi  на точно такое же количество переменных Z j  означает не что иное, как поворот  k осей  многомерного  пространства.

“Перебирая” поочередно оси, мы находим вначале ту из них, где дисперсия вдоль оси наибольшая. Затем делаем пересчет дисперсий для оставшихся  k-1 осей и снова находим “ось-чемпион” по дисперсии и т.д.

Образно говоря, мы заглядываем в куб (3-х мерное пространство) по очереди по трем осям и вначале ищем то направление, где видим наибольший “туман” (наибольшая дисперсия говорит о наибольшем влиянии чего-то постороннего); затем “усредняем” картинку по оставшимся двум осям и сравниваем разброс данных по каждой из них — находим “середнячка” и “аутсайдера”. Теперь остается решить систему уравнений — в нашем примере для 9 переменных, чтобы отыскать матрицу коэффициентов (весов) A[k·k].

Если  коэффициенты Aj i  найдены, то можно вернуться к основным переменным, поскольку доказано, что они однозначно выражаются в виде (суммирование по j=1…k)

X = S Aji·Z j .                                                                                                     {3-32}

Отыскание матрицы весов A[k·k] требует использования ковариационной матрицы  и корреляционной матрицы.

Таким образом,  метод главных компонент отличается прежде все тем, что дает всегда единственное решение задачи. Правда, трактовка этого решения своеобразна.

· Мы решаем задачу о наличии ровно стольких факторов, сколько у нас наблюдаемых переменных, т.е. вопрос о нашем согласии на меньшее число латентных факторов невозможно поставить;

· В результате решения, теоретически всегда единственного, а практически связанного с громадными вычислительными трудностями при разных физических размерностях основных величин, мы получим ответ примерно такого вида — фактор такой-то (например, привлекательность продавцов при анализе дневной выручки магазинов) занимает третье место по степени влияния на основные переменные.

Этот ответ обоснован — дисперсия этого фактора оказалась третьей по крупности среди всех прочих. Всё… Больше ничего получить в этом случае нельзя. Другое дело, что этот вывод оказался нам полезным или мы его игнорируем — это наше право решать, как использовать системный подход!


Несколько иначе осуществляется исследование латентных переменных в случае применения собственно факторного анализа. Здесь каждая реальная переменная рассматривается также как линейная комбинация ряда факторов Fj , но в несколько необычной форме

X i = S B ji · Fj  + D i.                                                                                        {3-33} причем  суммирование ведется по j=1…m , т.е. по каждому фактору.

Здесь  коэффициент Bji  принято называть нагрузкой  на  j-й  фактор со стороны  i-й переменной,  а последнее слагаемое в {3-33} рассматривать как помеху, случайное отклонение для Xi. Число факторов  m вполне может быть меньше числа реальных переменных n  и ситуации,  когда мы хотим оценить влияние всего одного фактора (ту же вежливость продавцов),  здесь вполне допустимы.

Обратим внимание на само понятие  “латентный”, скрытый, непосредственно не измеримый фактор. Конечно же, нет прибора и нет эталона вежливости, образованности, выносливости и т.п. Но это не мешает нам самим “измерить” их — применив соответствующую шкалу для таких признаков, разработав тесты для оценки таких свойств по этой шкале и  применив эти тесты к тем же продавцам. Так в чем же тогда “ненаблюдаемость”?  А в том, что в процессе эксперимента (обязательно) массового мы не можем непрерывно сравнивать все эти признаки с эталонами и нам приходится брать предварительные, усредненные, полученные совсем не в “рабочих” условиях данные.

Можно отойти от экономики и обратиться к спорту. Кто будет спорить, что результат спортсмена при прыжках в высоту зависит от фактора — “сила толчковой ноги”.  Да, это фактор можно измерить и в обычных физических единицах (ньютонах или бытовых  килограммах), но когда?!  Не во время же прыжка на соревнованиях!

А ведь именно в это, рабочее время фиксируются статистические данные, накапливается материал для исходной матрицы.

Несколько более сложно объяснить сущность самих процедур факторного анализа простыми, элементарными понятиями (по мнению некоторых специалистов в области факторного анализа — вообще невозможно). Поэтому постараемся разобраться в этом, используя  достаточно сложный, но, к счастью, доведенный в практическом смысле до полного совершенства, аппарат векторной или матричной алгебры.

До того  как станет понятной необходимость в таком аппарате,  рассмотрим так называемую основную теорему факторного анализа. Суть ее основана на представлении модели факторного анализа  {3-33} в матричном виде

X [k·1]  =  B [k·m] · F [m·1]  + D [k·1]                                  {3-34}

и на последующем доказательстве истинности выражения

R [k·k]  =  B [k·m] · B*[m·k],                                                  {3-35}

для “идеального” случая,  когда  невязки D пренебрежимо малы.

Здесь  B*[m·k]  это та  же матрица  B [k·m],  но  преобразованная  особым образом (транспонированная).

Трудность задачи отыскания матрицы нагрузок на факторы очевидна — еще в школьной алгебре указывается на бесчисленное множество решений системы уравнений, если число уравнений больше числа неизвестных. Грубый подсчет говорит нам, что нам понадобится найти  k·m  неизвестных элементов матрицы нагрузок, в то время как только около  k2 / 2 известных коэффициентов корреляции. Некоторую “помощь”  оказывает доказанное в теории факторного анализа соотношение между данным коэффициентом парной корреляции (например R12) и набором соответствующих нагрузок факторов:

R12 = B11 · B21 + B12 · B22 + … + B1m · B2m .                                   {3-36}

Таким образом, нет ничего удивительного в том утверждении, что факторный анализ (а, значит, и системный анализ в современных условиях) — больше искусство, чем наука. Здесь менее важно владеть “навыками” и крайне важно понимать как мощность, так и ограниченные возможности этого метода.

Есть и еще одно обстоятельство, затрудняющее профессиональную подготовку  в  области факторного анализа — необходимость быть профессионалом в  “технологическом” плане, в нашем случае это,  конечно же, экономика.

Но, с другой стороны, стать экономистом высокого уровня вряд ли возможно, не имея хотя бы представлений о возможностях анализировать и эффективно управлять экономическими системами на базе решений, найденных с помощью факторного анализа.

Не следует обольщаться вульгарными обещаниями популяризаторов факторного анализа, не следует верить мифам о его всемогущности и универсальности. Этот метод “на вершине” только по одному показателю — своей сложности, как по сущности, так и по сложности практической реализации даже при “повальном” использовании компьютерных программ. К примеру, есть утверждения о преимуществах метода главных компонент — дескать, этот метод точнее расчета нагрузок на факторы. По этому поводу имеется одна острота известного итальянского статистика Карло Джинни, она в вольном пересказе звучит примерно так: “ Мне надо ехать в Милан, и я куплю билет на миланский поезд,  хотя поезда на Неаполь ходят точнее и это подтверждено надежными статистическими данными. Почему? Да потому, что мне надо в Милан…”.


4.От автора

         Выражая благодарность каждому,  кто дочитал до этого места или прослушал все лекции и посетил все семинары, автор считает своим долгом сделать ряд пояснений, раскрыть свою позицию и свои взгляды на курс “Основы теории систем и системного анализа”.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11


ИНТЕРЕСНОЕ



© 2009 Все права защищены.