| |||||
МЕНЮ
| Основы теории систем и системный анализ (лекции)· подсистема “Студенты”; · подсистема “Кафедры”; · подсистема “Деканаты”. Было понятно, что локальные цели каждой из подсистем отличались друг от друга (в первом случае это учеба, во втором — обучение, в третьем — управление обучением на уровне факультета). Вместе с тем имелась и единая цель функционирования вуза — подготовка специалистов с высшим образованием по отдельным профи-лям. Была определена и мера оценки эффективности системы в целом, пусть даже в таком примитивном виде, как экзаменационные оценки знаний. Принималась во внимание иерархия подсистем в плане подчинения, направленность потоков знаний и информации о них в каналах связи между звеньями. Были содержательно сформулированы две задачи: · как по результатам текущего контроля знаний оценить эффективность процесса обучения на данном интервале семестра, обнаружить “узкие места” этого процесса; · как оценить эффективность управляющих воздействий на систему обучения на конечном его этапе — после подведения итогов сессии. При этом заранее предполагалось, что “виновниками” недостаточной эффективности обучения могут оказаться элементы любой из подсистем. В самом деле, низкая успеваемость может быть обусловлена разными причинами: · слабой предварительной подготовкой студентов; · малоэффективными в данных условиях методами обучения; · промахами в организации обучения. Заметим, что эти выводы пока никакого отношения к системному анализу не имеют, они сформулированы на основании понимания особенностей процесса обучения. Здесь, на этом этапе системного подхода в любой сфере всегда необходимо обращаться к “технологии” процессов, происходящих в системе. А это означает, что в предварительной части системного анализа в равной степени должны участвовать как специалисты в области ТССА, так и знатоки процессов данной системы. Участие одного из них — лица, принимающего решения (далее — ЛПР) совершенно обязательно. На следующем этапе в рассматриваемом примере были разработаны методы сбора, хранения и обработки информации. И здесь, как в любом случае системного подхода к задачам управления, пришлось решать проблему представительности собираемых данных. Прежде всего, пришлось поставить и решить вопрос об оценках текущего контроля знаний, Поскольку это не метры, литры или килобайты, поскольку не существует шкалы знаний, то что должна означать оценка текущего контроля? После обсуждения этих вопросов в среде специалистов (экспертов в области обучения в высшей школе) было принято решение — оценка текущего контроля знаний рассматривается как прогноз экзаменационной оценки. И снова обратим внимание на тот факт, что такая договоренность между ЛПР и специалистами ТССА была бы необходима и в том случае, когда речь бы шла не о знаниях, а о будущих прибылях или надоях! Здесь возможно различие в достоверности прогноза и то далеко не всегда, но со стохастичным характером данных системного анализа приходится мириться — такова природа явлений в реальной жизни. Но и это еще не всё об информации, используемой при системном анализе. Далеко не всегда “измерения” чего-то можно производить без ощутимых последствий. И пусть даже сбор информации не приносит прямого морального или материального ущерба, что иногда вполне возможно, хотя и не всегда очевидно. Главное в другом — если мы хотим иметь информацию об элементе системы, то надо стремиться получить ее с наименьшими, информационными же, потерями. В рассматриваемом примере не использовались никакие приборы, лишенные разума и эмоций, — источниками данных и “измерителями” являлись люди! В самом деле, необходимость предсказать свои собственные достижения в условиях, когда они не только от тебя зависят (прогнозировать итог экзамена студента), вне всяких сомнений, хоть чуть-чуть, но всё же меняет один из элементов, то есть преподавателя. 1.6 Моделирование как метод системного анализаОдной из проблем, с которой сталкиваются почти всегда при проведении системного анализа, является проблема эксперимента в системе или над системой. Очень редко это разрешено моральными законами или законами безопасности, но сплошь и рядом связано с материальными затратами и (или) значительными потерями информации. Опыт всей человеческой деятельности учит — в таких ситуациях надо экспериментировать не над объектом, интересующим нас предметом или системой, а над их моделями. Под этим термином надо понимать не обязательно модель физическую, т. е. копию объекта в уменьшенном или увеличенном виде. Физическое моделирование очень редко применимо в системах, хоть как то связанных с людьми. В частности в социальных системах (в том числе — экономических) приходится прибегать к математическому моделированию. Буквально через минуту станет ясно, что математическим моделированием мы овладеваем еще на школьной скамье. В самом деле, пусть требуется найти площадь прямоугольника со сторонами 2 и 8 метров. Измерение сторон произведено приближенно — других измерений расстояний не бывает! Как решить эту задачу? Конечно же — не путем рисования прямоугольника (даже в уменьшенном масштабе) и последующем разбиении его на квадратики с окончательным подсчетом их числа. Да, безусловно, мы знаем формулу S = B·H и воспользуемся ею — применим математическую модель процесса определения площади. Возвращаясь к начатому ранее примеру системного анализа обучения, можно заметить, что там собственно нечего вычислять по фор-мулам — где же их взять. Это так и есть, не существует методов расчета в такой сфере как “прием-передача” знаний и сомнительно, чтобы эти методы когда-либо появились. Но ведь не существует формулы пищеварения, а люди все таки едят, планируют процесс питания, управляют им и иногда даже успешно..... Так что же? Если нет математических моделей — не выдумывать же их самому? Ответ на этот вопрос самый простой: всем это уметь и делать — не обязательно, а вот тому, кто взялся решать задачи системного анализа — приходится и очень часто. Иногда здесь возможна подсказка природы, знание технологии системы; в ряде случаев может выручить эксперимент над реальной системой или ее элементами (т. н. методы планирования экспериментов) и, наконец, иногда приходится прибегать к методу “черного ящика”, предполагая некоторую статистическую связь между его входом и выходом. Таким “ящиком” в рассматриваемом примере считался не только студент (с вероятностью такой-то получивший знания), но и все остальные элементы системы — преподаватели и лица, организующие обучение. Конечно, возможны ситуации, когда все процессы в большой системе описываются известными законами природы и когда можно надеяться, что запись уравнений этих законов даст нам математическую модель хотя бы отдельных элементов или подсистем. Но и в этих, редких, случаях возникают проблемы не только в плане сложности урав-нений, невозможности их аналитического решения (расчета по формулам). Дело в том, что в природе трудно обнаружить примеры “чистого” проявления ее отдельных законов — чаще всего сопутствующие явление факторы “смазывают” теоретическую картину. Еще одно важное обстоятельство приходится учитывать при математическом моделировании. Стремление к простым, элементарным моделям и вызванное этим игнорирование ряда факторов может сделать модель неадекватной реальному объекту, грубо говоря — сделать ее неправдивой. Снова таки, без активного взаимодействия с технологами, специалистами в области законов функционирования систем данного типа, при системном анализе не обойтись. В системах экономических, представляющих для вас основной интерес, приходится прибегать большей частью к математическому моделированию, правда в специфическом виде — с использованием не только количественных, но и качественных, а также логических показателей. · Из хорошо себя зарекомендовавших на практике можно упомянуть модели: межотраслевого баланса; роста; планирования эко-номики; прогностические; равновесия и ряд других. Завершая вопрос о моделировании при выполнении системного анализа, резонно поставить вопрос о соответствии используемых моделей реальности. Это соответствие или адекватность могут быть очевидными или даже экспериментально проверенными для отдельных элементов системы. Но уже для подсистем, а тем более системы в целом существует возможность серьезной методической ошибки, связанная с объективной невозможность оценить адекватность модели большой системы на логическом уровне. Иными словами — в реальных системах вполне возможно логическое обоснование моделей элементов. Эти модели мы как раз и стремимся строить минимально достаточными, простыми настолько, насколько это возможно без потери сущности процессов. Но логически осмыслить взаимодействие десятков, сотен элементов человек уже не в состоянии. И именно здесь может “сработать” известное в математике следствие из знаменитой теоремы Гёделя — в сложной системе, полностью изолированной от внешнего мира, могут существовать истины, положения, выводы вполне “допустимые” с позиций самой системы, но не имеющие никакого смысла вне этой системы. То есть, можно построить логически безупречную модель реальной системы с использованием моделей элементов и производить анализ такой модели. Выводы этого анализа будут справедливы для каждого элемента, но ведь система — это не простая сумма элементов, и ее свойства не просто сумма свойств элементов. Отсюда следует вывод — без учета внешней среды выводы о поведении системы, полученные на основе моделирования, могут быть вполне обоснованными при взгляде изнутри системы. Но не исключена и ситуация, когда эти выводы не имеют никакого отношения к системе — при взгляде на нее со стороны внешнего мира. Для пояснения вернемся к рассмотренному ранее примеру. В нем почти все элементы были построены на вполне оправданных логических постулатах (допущениях) типа: если студент Иванов получил оценку “знает” по некоторому предмету, и посетил все занятия по этому предмету, и управление его обучением было на уровне “Да” — то вероятность получения им оценки “знает” будет выше, чем при отсутствии хотя бы одного из этих условий. Но как на основании системного анализа такой модели ответить на простейший вопрос; каков вклад (хотя бы по шкале “больше-меньше”) каждой из подсистем в полученные фактические результаты сессии? А если есть числовые описания этих вкладов, то каково доверие к ним? Ведь управляющие воздействия на систему обучения часто можно производить только через семестр или год. Здесь приходит на помощь особый способ моделирования — метод статистических испытаний (Монте Карло). Суть этого метода проста — имитируется достаточно долгая “жизнь” модели, несколько сотен семестров для нашего примера. При этом моделируются и регистрируются случайно меняющиеся внешние (входные) воздействия на систему. Для каждой из ситуации по уравнениям модели просчитываются выходные (системные) показатели. Затем производится обратный расчет — по заданным выходным показателям производится расчет входных. Конечно, никаких совпадений мы не должны ожидать — каждый элемент системы при входе “Да” вовсе не обязательно будет “Да” на выходе. Но существующие современные методы математической статистики позволяют ответить на вопрос — а можно ли и, с каким доверием, использовать данные моделирования. Если эти показатели доверия для нас достаточны, мы можем использовать модель для ответа на поставленные выше вопросы. 1.7 Процессы принятия управляющих решенийПусть построена модель системы с соблюдением всех принципов системного подхода, разработаны и “обкатаны” алгоритмы необходимых расчетов, приготовлены варианты управляющих воздействий на систему. Надо понять, что эти воздействия не всегда заключаются в изменениях уровня некоторых входных параметров — это могут быть варианты структурных перестроек системы. Так вот — все это есть. И что же дальше? Пора и управлять, управлять с единой целью — повышения эффективности функционирования системы (однокритериальная задача) или с одновременным достижением нескольких целей (многокритериальная задача). Естественно, мы ставим вопрос: “А что будет, если …?” и ожидаем ответа. Но здесь не следует ожидать чуда, нельзя надеяться на однозначный ответ. Если к примеру, мы интересуемся вопросом — “к чему приведет увеличение на 20% закупок цемента?”, то мы должны не удивляться, получив ответ — “Это приведет к увеличению рентабельности производства кирпича на величину, которая с вероятностью 95% не будет ниже 6% и не будет выше 14%”. И это еще очень содержательный ответ, могут быть и более “расплывчатые”! Здесь уместно в последний раз обратиться к примеру с анализом системы обучения и ответить на возможный вопрос — а как же были использованы выводы системного анализа обучения в КГРИ? Ответ одного из соавторов системного анализа, пишущего эти строки, очень краткий — никак. Можно теперь открыть еще одну (не последнюю) тайну ТССА. Дело в том, что судьбу разработок по управлению большими системами должно решать только ЛПР, и только этот человек (или коллективный орган) решает вопрос дальнейшей судьбы итогов системного анализа. Важно отметить, что это правило никак не связано ни с “важностью” конкретной отрасли промышленности, торговли или образования, ни с политическими обстоятельствами, ни с государственным строем. Все намного проще — мудрость отцов-основателей ТССА проявилась, прежде всего, в том, что неполнота достоверности выводов системного анализа была ими заранее оговорена. Поэтому те, кто ведет системный анализ, не должны претендовать на обязательное использование своих разработок; факты отказа от их использования не есть показатель непригодности этих разработок. С другой стороны, те, кто принимают решения, должны столь же четко понимать, что расплывчатость выводов ТССА есть неизбежность, она может быть обусловлена не промахами анализа, а самой природой или ошибкой постановки задачи, например, попытки управлять такой гигантской системой, как экономика бывшего СССР. 2. Основные понятия математической статистики2.1 Случайные события и величины, их основные характеристикиКак уже говорилось, при анализе больших систем наполнителем каналов связи между элементами, подсистемами и системы в целом могут быть: · продукция, т. е. реальные, физически ощутимые предметы с заранее заданным способом их количественного и качественного описания; · деньги, с единственным способом описания — суммой; · информация, в виде сообщений о событиях в системе и значениях описывающих ее поведение величин. Начнем с того, что обратим внимание на тесную (системную!) связь показателей продукции и денег с информацией об этих показателях. Если рассматривать некоторую физическую величину, скажем — количество проданных за день образцов продукции, то сведения об этой величине после продажи могут быть получены без проблем и достаточно точно или достоверно. Но, уже должно быть ясно, что при системном анализе нас куда больше интересует будущее — а сколько этой продукции будет продано за день? Этот вопрос совсем не праздный — наша цель управлять, а по образному выражению “управлять — значит предвидеть”. Итак, без предварительной информации, знаний о количественных показателях в системе нам не обойтись. Величины, которые могут принимать различные значения в зависимости от внешних по отношению к ним условий, принято называть случайными (стохастичными по природе). Так, например: пол встреченного нами человека может быть женским или мужским (дискретная случайная величина); его рост также может быть различным, но это уже непрерывная случайная величина — с тем или иным количеством возможных значений (в зависимости от единицы измерения). Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 |
ИНТЕРЕСНОЕ | |||
|