реферат, рефераты скачать
 

Методические рекомендации к определению и выведению гемограммы у животных


Зернистые лейкоциты образуются у птиц (и у реп­тилий и высших амфибий) экстраваскулярно, в самой ткани костного мозга. У низших позвоночных (хво­статых амфибий и рыб) красного костного мозга нет и гемопоэз становится более диффузным, причём нет резкого разделения лимфоидной и миэлоидной тка­ней. Чрезвычайно мало известно о генезе тромбоци­тов у птиц. По 'некоторым данным, они образуются из лимфоцитов, в виде особого самостоятельного вида клеток, по другим — они возникают из эндоте­лия. У млекопитающих же, повидимому, кровяные пластинки образуются из мегакариоцитов (гигант­ских клеток) красного костного мозга, путём отшнуровывания цитоплазмы (Райт).



КРОВЯНЫЕ ПЛАСТПНКИ МЛЕКОПИТАЮЩИХ И ТРОМБОЦИТЫ ПТИЦ И НИЗШИХ ПОЗВОНОЧНЫХ


Другим видом форменных элементов крови млеко­питающих являются так называемые кровяные пла­стинки. Это маленькие тельца (от 1 до 3—4 µ в диа­метре), с неправильными «рваными» краями и утол­щением посредине. Каждая пластинка состоит из гиалоплазмы (гиаломер), образующей основу пла­стинки, и хромомера — зёрнышек, скопляющихся в её центре или, изредка, разбросанных по гиалоплазме. Гиалоплазма окрашивается по Гимза и по Палпенгейму в голубовато-серый цвет (иногда с ро-вовым оттенком). Зёрнышки хромомера окрашивают­ся азурофильно, в вишнёвый цвет.

В среднем 1 мм3 крови сельскохозяйственных мле­копитающих животных содержит от 200 тыс. до 400 тыс. кровяных пластинок. Однако у отдельных видов имеются значительные колебания количества пластинок в крови. Размеры кровяных пластинок у некоторых животных (кролик, свинья) мало вариируют, у других же (особенно у лошади) вариации в величине весьма значительны: при среднем диаметре в 3 µ, попадаются и очень маленькие пластинки (до 1 µ) и прямо гиганты, достигающие 12 µ.

Кровяные пластинки не являются клетками. По-видимому, это осколки клеток, но происхождение их недостаточно ясно. Вероятнее всего предположение Райта, установившего, что гигантские клетки кост­ного мозга — так называемые мегакариоциты, отшнуровывая выступы своей цитоплазмы, содержащие азурофильные зёрна, образуют кровяные пластинки. Исследования Райта были подтверждены рядом авто­ров. Однако Максимов считает кровяные пластинки остатками дегенерировавших и вытолкнутых из эрит­роцитов ядер.

Функциональное значение кровяных пластинок также не может считаться хорошо выясненным. Их способность быстро распадаться, слипаться друг с другом в плотные кучки, с возникновением вокруг таких кучек нитей фибрина при свёртывании крови говорит за активное участие кровяных пластинок в этом процессе. По некоторым данным, кровяные пластинки (а также и эндотелий сосудов) содержат тромбокиназу. Способность кровяных пластинок образовывать, при нарушениях кроветока, плотные сгустки ведёт нередко к закупориванию (тромбу) мелких кровеносных сосудов.

На препаратах кровяные пластинки чаще всего встречаются кучками, причём иногда границы отдель­ных пластинок исчезают. Опытный исследователь, изучая мазок крови, может отметить тромбопению (очень малое количество кровяных пластинок) и тром­боцитов (повышенное их количество).

Предполагается, что при тромбопении скорость свёртывания крови резко снижена.

В крови птиц и всех низших позвоночных, наряду с эритроцитами и лейкоцитами, встречается третий тип клеток — тромбоциты. Кровяных пластинок у них нет. Каковы филогенетические взаимоотношения между тромбоцитами птиц и низших позвоночных и кровяными пластинками млекопитающих, неизвестно.

Тромбоциты — это овальные (у амфибий веретено­образные) клетки с большими ядрами и сравнительно тонким слоем облегающей их цитоплазмы, которая только на полярных концах клетки скопляется в не­сколько большем количестве. В цитоплазме нередко видно (на концах клетки) несколько азурофильных зёрен. Иногда цитоплазма вакуолизирована (у гу­сей очень часто). Цитоплазма очень слабо окраши­вается в нежноголубой цвет (иногда остаётся бес­цветной). Однако границы её видны очень чётко. Ядро содержит мелкие, интенсивно окрашивающиеся глыбки хроматина.   

Размеры тромбоцитов отдельных видов сельско­хозяйственных птиц незначительно различаются. Так, у гуся средняя длина тромбоцитов равна 6,8µ, ширина 4,5µ; у курицы — соответственно 8,5 µ и 5,3 µ В 1 мм3 крови имеется от 25 до 70 тыс. тромбоцитов.

Функция тромбоцитов изучена ещё меньше, чем кровяных пластинок млекопитающих. На препара­те они нередко собираются кучками, но клеточные границы при этом сохраняются.

По Мевесу, в препарате свежей крови тромбоциты очень быстро подвергаются некробиотическим изме­нениям. При этом они слипаются кучками, прилипают к стеклу, укорачиваются, но в то же время расши­ряются (набухают); цитоплазма, скопляясь на одной стороне клетки, образует всё более утончающиеся псевдоподии, превращающиеся в тончайшие лучи. В окружающей плазме вокруг таких тромбоцитов начинают образовываться нити фибрина. Всё это даёт основание предполагать, что функция тромбоцитов близка к функции кровяных пластинок млекопитаю­щих, т. е. они играют существенную роль в свёрты­вании крови.

Образование тромбоцитов у птиц локализуется в красном костном мозгу. По одним авторам, они обра­зуются из особых родоначальных клеток, по дру­гим — из эндотелия сосудов.


КРАСНЫЕ КРОВЯНЫЕ ТЕЛЬЦА (ЭРИТРОЦПТЫ)


Количественно преобладающей клеточной формой нормальной крови позвоночных животных являются красные кровяные тельца — эритроциты. Обычно количество их в 1 мм3 крови исчисляется миллиона­ми, в то время как кровяные пластинки y птиц и низ­ших позвоночных—тромбоциты) исчисляются в том же объёме крови сотнями тысяч, а лейкоциты — тысячами.

Поэтому на мазках физиологически нормальной крови основной фон составляют густо лежащие друг около друга, окрашенные эозином в яркорозовый или медно-красный цвет эритроциты.

Красные кровяные тельца выполняют в организме исключительно важную функцию — перенос кисло­рода от лёгких к тканям. Это осуществляется благо­даря содержанию в эритроцитах железосодержащего сложного белка — гемоглобина. Обычно в эритро­цитах бывает 33% гемоглобина (соответственно 12—17% гемоглобина в цельной крови). Каждый грамм гемоглобина, переходя в оксигемоглобин, свя­зывает 1,34 см3 кислорода, образуя с ним легко диссоциирующее химическое соединение.

Совокупность эритроцитов всей крови животного называется эритрояом. У лошади весом 500 кг эритрон состоит из 436,5 триллиона красных те­лец, общим объёмом в 14,4 л и содержит 6,76 кг гемоглобина. По мазку крови можно, при извест­ном навыке, составить приближённое представ­ление как о количестве эритроцитов по густоте расположения клеток на равномерно полученном мазке, так и о насыщенности их гемоглобином — по интенсивности окраски (методом Романовского) каж­дого отдельного эритроцита. Для подсчёта количества красных кровяных телец и для точного определения количества гемоглобина применяют специальные, методы исследования крови. Подробное описание этих методов дано в любом курсе физиологии живот­ных. Картина красной крови при специальной окра­ске мазка особенно ценна тем, что она даёт возмож­ность распознавать регенеративные и дегенеративные изменения в эритроцитах по разной интенсивности окрашивания их специфическими красками, а также по изменению формы и внутренней структуры эритро­цитов.


А. НОРМОЦИТЫ


Картина красной крови физиологически нормаль­ного взрослого животного характеризуется безуслов­ным преобладанием зрелых форм красных кровяных телец — нормоцигпов. Сравнительно очень редко сре­ди нормоцитов, окрашенных по методу Романов­ского в типичный медно-красный цвет, попадаются и незрелые эритроциты — полихроматофилы, окра­шенные в переходные цвета от ясно синего, ти­пичного для юной формы, через сине-фиолетовый, до фиолетово-красного цвета, приближающегося к нормальной окраске зрелого эритроцита. Таких форм бывает не более 1—5 на 1 000 зрелых эритроцитов у коров и лошадей и несколько более у свиней, собак, морских свинок и крыс.

Нормоцит млекопитающих (за исключением верб­люда и ламы) представляет собой круглую безъядер­ную, плоскую клетку, с утолщёнными краями и не­сколько вогнутым центром. Собственно, вернее даже было бы говорить не о клетке, а об остатке клетки, поскольку нормоцит лишён обязательной и важней­шей составной части клетки — ядра. (Поэтому для элементов красной крови млекопитающих лучше применять название «красное кровяное тельце», чем «эритроцит», хотя последнее очень широко распро­странено и имеет преимущество краткости.)

У верблюда и ламы нормоциты овальны.

В профиль нормоцит имеет вид бисквита. Форму нормоцита лучше представить в виде пластинки или диска с утолщёнными краями. По некоторым новым данным, эритроциты в циркулирующей крови имеют колоколообразную форму («шапочки») с вогнутым центром. На неокрашенном мазке красные кровяные тельца кажутся жёлтыми или зеленовато-жёлтыми, соответственно цвету гемоглобина в очень тонких слоях. Периферическая часть, как содержащая более толстый слой гемоглобина, окрашена интенсивнее.

При окраске по Гимза эритроциты окрашиваются в красивый розово-красный, а при окраске по Паппенгейму — в медно-красный цвет. Так как при этом избирательно окрашивается гемоглобин, то на пери­ферии, в утолщённой части эритроцита, где гемогло­бина больше, окраска выражена интенсивнее. В центре окраска несколько менее интенсивна, но, в норме, достаточно заметна. При нарушениях гемоглобино-образования, нормоциты окрашиваются атипично. Иногда резко ослаблена окраска только центральной части красного кровяного тельца. Тогда эритроцит кажется красным кольцом с просветом в центре, — так называемая кольцевая форма. Такие формы осо­бенно типичны даже для физиологически нормальной крови собаки.

В других случаях количество гемоглобина падает настолько сильно, что весь эритроцит (но, конечно, в первую очередь его центр) окрашивается гораздо слабее нормального. Такие эритроциты называются гипохромными, а само явление — гипохромией.

Наконец, возможны случаи, когда эритроциты содержат больше гемоглобина, чем обычно. Такие эритроциты окрашиваются интенсивнее и называются гиперхромными (явление гиперхромии).

При изучении мазка с дополнительным подсчётом количества эритроцитов и определением количества гемоглобина можно установить очень важный пока­затель насыщенности каждого отдельного эритроци­та гемоглобином — так называемый цветной индекс (показатель) крови.

Цветной показатель не может быть определен, даже весьма приближенно, по мазку крови. Каза­лось бы, интенсивность окраски красных кровяных телец эозином даёт основание для суждения о на­сыщенности эритроцитов гемоглобином. Однако это далеко не так. Густота окраски эритроцита зави­сит, кроме фактора интенсивности (концентрации гемоглобина), также и от фактора ёмкости (размеры эритроцита, его толщина). При некоторых анемиях (особенно при микроцитарной гиперхромной анемии) резко изменяется форма красных кровяных телец. Из плоских, относительно растянутых дисков они превращаются в толстые, гораздо меньшего диаме­тра, тельца. При этом значительно возрастает гу­стота окраски таких, кажущихся более мелкими, эритроцитов. В действительности содержание гемо­глобина в таких эритроцитах не изменяется или изменяется в гораздо меньшей степени, чем это представляется при рассматривании их в окрашен­ных мазках.

.Цветной показатель (У) обозначает не абсолютное содержание гемоглобина в одном эритроците, но некоторую пропорциональную абсолютному содер­жанию величину. Уровень гемоглобина в кровп дан в условных процентах по Сали. В норме цветной

показатель равен единице (У = 1,0). Число большее единицы указывает на избыток гемоглобина в эритроците (гиперхромия); цветной показатель меньше единицы указывает на пониженное содержание ге­моглобина (гипохромия).

Цветной индекс для сельскохозяйственных п лабо­раторных животных нужно рассчитывать по следую­щей полной формуле:

 NRxHb

J= AHbxR

где: J — цветной индекс; NR — нормальное для дан­ного вида количество эритроцитов в 1 мм3 крови; NHb — нормальный для данного вида животных. Многие авторы считают, что в сосудах жи­вотного эритроциты имеют чашеобразную или даже колоколообразную форму (Геле, Вайденрайх, Крю­ков). Возможные прижизненные изменения


формы эритроцитов представлены на следующей схеме (рис. 20).

По величине эритроциты можно подразделить на собственно нормоциты (для лошади — 5,6 µ диамет­ром), микроциты и макроциты. Микроциты это эритро­циты меньшего, чем в норме, диаметра (для лошади — менее 5 µ), макроциты — большего (7—6 µ). Внутренняя струк­тура эритроцитов почти не выяснена, но самое наличие этой прижизненной структуры кажется весьма вероятным. Иначе было бы не­постоянной формы эритроцитов, «теней эритроцитов» понятно наличие их эластичности, нахождение при гемолизе, проникновения в эритроцит трипанозом без выхода из него гемоглобина, несомненно до казанное наличие в нём особых специфически окраши­вающихся образований, и т. д. С поверхности красное кровяное тельце отграничено липоидно-белковой мем­браной (Крюков, Лепешинская). В какой степени она отдиференцирована гистологически, представляется



ещё спорным. Наличие чётко выраженной оболочки эритроцита защищается Немиловым и Лепешинской.

Под оболочкой предполагается наличие «краевых обручей» — эластических нитей, образующих остов эритроцита (рис. 21).

Весьма вероятно наличие в эритроцитах «внут­ренних тел», указываемых Максимовым, Арнольдом и др.

Ряд исследователей (в том числе Н. Д. Стражеско) развивают представление об очень сложной прижиз­ненной структуре так называемого «совершенного эритроцита» млекопитающих. Эта, в значительной степени гипотетическая, структура представляется состоящей из:

1. Ядра, остатков ядра или кровяных пласти­нок (кр. п.).

2. Протоплазмы, состоящей из:

a) радиальной структуры, лишь редко видимой (С);

b) нагромождённой сверху в юном возрасте базофильной субстанции (полихромазия);

c) коркообразной сложной наружной оболочки (М).

3. Архоплазмы, состоящей из:

a) более светлого центрального вещества (ст. т.), соответственно вогнутости («стекловидное тело»);

b) микроцентра (центральное тельце) с соединением (ц); в микроцентре имеются два очень маленьких блестящих зёрнышка;

c) прилежащего, трудно изобразимого, величиною в 1—2 микрона, шаровидного, так называемого «капсулъного тела» (К).

Вряд ли, однако, можно признать такую сложную структуру достаточно экспериментально обоснованной. Более того, имеются высказывания об отсутствии такой сложной структуры в эритроците (Насонов). Не совсем понятно, какие физиологические функции могли бы быть связаны с такой сложной и в значи­тельной степени искусственной структурой красного кровяного тельца (рис. 22).

Эритроциты птиц и низших позвоночных существен­но отличаются от красных кровяных телец млекопи­тающих прежде всего тем, что даже в зрелом состоянии содержат ядра. Кроме того, они гораздо крупнее раз­мером и имеют овальную форму.

Потеря зрелыми формами эритроцитов млекопи­тающих ядра произошла, вероятно, в процессе при­способления этих клеток к переносу кислорода


Ядерные эритроциты птиц и низших позвоночных являются полноценными клетками с интенсивным обменом веществ и поэтому значительное количество переносимого ими кислорода потребляют сами. Эри­троциты же млекопитающих, теряя ядро, резко снижают свой газообмен и, следовательно, мало потребляют переносимый ими кислород. Безъядерные эритроциты, следовательно, более «экономные» пере­носчики кислорода, чем кариоциты птиц и низших позвоночных.

В мазках крови эритроциты видны иногда тесно наложенными друг на друга («монетные столбики»). Особенно резко эта способность выражена в крови лошади. Очень трудно получить мазок лошадиной крови, где бы эритроциты не образовывали, накладываясь друг на друга, густой сети. Отдельные крас­ные кровяные тельца обычно находятся только на тонком, свободном краю мазка крови лошади.

При медленном подсыхании мазка резко повышает­ся концентрация солей плазмы крови, и в таком гипер­тоническом растворе эритроциты, отдавая воду, при­нимают неправильную звёздчатую форму или форму тутовых ягод.

Размеры эритроцитов у различных видов живот­ных значительно вариируют, так же как и их коли­чество. В таблице 14 приведены средние данные о количестве и размерах зрелых эритроцитов у основ­ных сельскохозяйственных и лабораторных живот­ных. Общей закономерностью является обратная про­порциональность между размерами и количеством эритроцитов в 1 мм3 крови.

По В. П. Зайцеву, размер эритроцитов лошади за­висит от типа конституции. Так, у астенических лошадей средний диаметр эритроцитов 5,12 µ у мускулярных 5,02 µ и у пикнических 4,9 µ.

В соответствии с этим, и количество эритроцитов, по В. П. Зайцеву, зависит от конституции: в 1 мм3 крови астенических лошадей содержится в среднем


9,97 млн. эритроцитов, у мускулярных 7,51 млн. и у пикников 7,98 млн.

Весьма мало известно о длительности жизни эри­троцитов. В отношении безъядерных красных кровя­ных телец имеются данные о том, что их жизненный цикл составляет 3—4 недели. Они подвергаются фа­гоцитозу в селезёнке, в расширенных капиллярах её пульпы. Железо их гемоглобина, вместе с частью пиррольных колец гематнна, откладывается в селезёнке в виде железосодержащего пигмента — гемосидерина. Часть гемина, лишившегося железа, попадает в пе­чень и превращается там в жёлчные пигменты. В пе­чени же накопляется обычно и известное количество гемосидерина. Это количество доходит до громадных размеров в патологических условиях, когда про­исходит усиленный распад эритроцитов и гемогло­бина. Образующийся при этом железосодержащий пигмент усиленно накопляется не только в печени и селезёнке, но и костном мозгу и лимфатических со­судах, обусловливая явления их гемосидероза.

Гемосидерин следует рассматривать, как резерв железа и пиррольных колец, который может быть использован для синтеза гемоглобина.


Б. ГЕНЕЗИС ЭРИТРОЦИТОВ


Постоянное новообразование эритроцитов происхо­дит у млекопитающих в красном костном мозгу. Ос­новной, исходной клеткой для развития эритроцитов является лимфоидный эритробласт (по А. Н. Крюко­ву, прогемобласт, или проэритробласт). Лимфоидный эритробласт является первой ступенью (этапом) диференциации лимфоидоцита (гемоцитобласта) в эритроцит. Из лимфоидного эритробласта возникает непосредственный предшественник эритроцита — эритробласт. За счёт размножения и диференциации эритробласта и происходит, при обычном, физиологи­чески нормальном кроветворении, непрерывное ново­образование эритроцитов.

Последовательное образование эритроцита представить в виде следущей схемы:


Схема эритропоэза

Индифферентная мезенхимная клетка.

Лимфоидоцит (гемоцитобласт)

Лимфоидный эритробласт (проэритробласт, прогемобласт)

Полихроматофильный эритробласт

Эритробласт (нормобласт)

Эритроцит (нормоцит)

Стадия лимфоидоцита (гемоцитобласта) может дать, диференцируясь под соответствующими гумораль­ными влияниями, все виды клеток крови: гранулоциты, агранулоциты и эритроциты. Лимфоидный эритробласт (проэритробласт, прогемобласт) уже начинает диференцироваться в направлении эри-тропоэза и является в этом отношении унипотенциальным.

Лимфоидный эритробласт (проэритробласт). Про­эритробласт, эта материнская клетка эритроцитов, по своей структуре ещё весьма близок к родоначальным кровяным клеткам. Это большая клетка (до 20 µ в диаметре у лошади), с крупным, округлым ядром и резкобазофильной цитоплазмой, несколько более широкой, чем у гемоцитобласта. Крупное, почти правильной круглой или овальной формы ядро, при окраске по Романовскому, окрашивается в интенсив­ный красно-фиолетовый цвет. «Хроматиновая сеть ядра отличается необыкновенной правильностью сво­его сплетения, равномерностью составляющих сеть примитивных нитей и в то же время нежностью этого сплетения. В большинстве случаев примитивные нити более крупного калибра, чем у лимфоидных ма­теринских клеток, резче красящиеся, и потому ядро получает более тёмную и более насыщенную окраску» (А. Н. Крюков). У более зрелых проэритробластов ядро имеет укрупнённую структуру, что создаёт впечатление зернистости или рубчатости. Иногда внутри ядра встречаются небольшие кругловатые или вытянутые участки, окрашивающиеся в синий или сине-фиолетовый цвет. Это нуклеоли или, вер­нее, псевдонуклеоли — участки протоплазмы, про­свечивающей сквозь структуру ядра.

Цитоплазма проэритробластов окрашивается в ин­тенсивно-синий, с лёгким оттенком ультрамарина, цвет. Она явственно нитчата и делится на две зоны: перинуклеарную, очень узкую, имеющую розоватый оттенок, и гораздо более широкую зону интенсивного фиолетово-синего или ультрамариново-синего цвета при окраске по Романовскому. Переход между этими зонами плавный, но отчётливо заметный.

Эритрпбласт. При дальнейшем созревании лимфоидный эритробласт превращается в эритробласт — клетку, постоянно продуцирующую в костном мозгу млекопитающих эритроциты. В физиологически нор­мальных условиях лимфоидные эритроциты являются покоящимися, резервными, малодиференцированными клетками, непосредственно не участвующими в текущем эритропоэзе. Только в патологических условиях они получают гуморальный стимул к дифференциации в эритробласты.

Эритробласты в костном мозгу размножаются по­средством митотического (кариокинетического) деле­ния. Однако при ряде патологических состояний эри­тробласты могут делиться и амитотически, но при этом получаются карликовые формы эритроцитов. Итак, начальной клеткой физиологически нормаль­ного эритропоэза является эритробласт.

Первоначальная, юная форма эритробласта, так называемый базофильный эритробласт, постепенно переходит в полихроматофильный, а этот — в ортохромный эритробласт.

По мере вызревания лимфоидного эритробласта, структура его ядра становится всё грубее, превра­щаясь постепенно в типичную для эритробласта радиарную, с большими, тёмными глыбками хромати­на, со светлыми между ними промежутками, распо­ложенными по типу спиц в колесе. Цитоплазма ста­новится бледнее, блёклосинего цвета (базофильный эритробласт) с постепенным переходом к сине-фио­летовой окраске (полихроматофильный эритробласт). В дальнейшем, благодаря постепенному накопле­нию гемоглобина, цитоплазма, окрашенная по Романовскому, имеет сперва жёлто-розовый, а затем типичный для зрелого эритроцита медно-красный цвет (ортохромный эритробласт). На этой стадии созревания ядро эритробласта млекопитающих резко уменьшается и пикнотизируется, радиар-ная структура постепенно исчезает, всё ядро интен­сивно окрашивается в вишнёво-фиолетовый цвет и принимает правильную круглую форму. Размеры созревающего эритробласта прогрессивно уменьшают­ся и, наконец, достигают размеров эритроцита.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


ИНТЕРЕСНОЕ



© 2009 Все права защищены.