реферат, рефераты скачать
 

Литература - Другое (книга по генетике)


быстрый и эффективный метод ПЦР/StyI-диагностики cамой

частой в России (более 70%) мутации R408W (Ivaschenko,

Baranov, 1993; Иващенко и др., 1993). Дигностика других ма-

жорных мутаций в PAH-гене осуществляется методами ПЦР+АСО,

аллель-специфической амплификации (ARMS), методом одноните-

вого конформационного полиморфизма (SSCP) (см. Главу IY).

При первичном обследовании семьи черезвычайно удобно исполь-

зовать три полиморфные нейтральные мутации в кодонах 232,

245 и 385, сцепленные в Кавказских популяциях с определенны-

ми ПДРФ-гаплотипами, а значит и со специфическими мутантными

аллелями. Каждая из этих мутаций создает новый сайт рестрик-

ции и поэтому их аллельное состояние может быть легко проти-

пировано с помощью амплификации и рестрикции (Kalaydjieva et

al., 1991). При анализе семьи, в которой отсутствуют легко

идентифицируемые прямыми методами мутации, молекулярная ди-

агностика может быть проведена с помощью внутригенных поли-

морфных сайтов рестрикции. Удобен, в частности, Msp1-поли-

морфизм в 8-м экзоне, анализ которого может быть осуществлен

методом ПЦР/рестрикции (Wedmeyer et al., 1993). В последнее

время появились даные о наличии высокополиморфных сайтов

внутри интронов гена РАН, которые оказались особенно удобны-

ми для молекулярного маркирования мутантных аллелей (Goltzov

et al.1994).

Генокоррекция ФКУ успешно осуществлена в опытах in

vitro и в настоящее время находится на стадии эксперимен-

тальной разработки (Табл.9.2. Глава IX).

10.4.7 Синдром Леш-Нихана.

Синдром Леш-Нихана - рецессивное сцепленное с полом за-

болевание, обусловленное наследственной недостаточностью ги-

поксантин-гуанин фосфорибозилтрансферазы (HPRT) и сопровож-

дающееся тяжелыми поражениями центральной нервной системы.

Фермент HPRT участвует в регуляции метаболизма пуринов,

контролируя превращение гуанина и инозина в соответствующие

рибонуклеотиды. Ген HPRT экспрессируется во всех типах кле-

ток с образованием мРНК размером 654 п.о.. Культивируемые

линии клеток, дефектные по HPRT, устойчивы к 8-азагуанину и

6-тиогуанину, и таким образом, могут быть отобраны на соот-

ветствующих селективных средах. Гетерозиготные носители му-

таций по HPRT-гену могут быть легко выявлены по наличию 2-х

типов клеток - устойчивых и чувствительных к 8-азагуанину, в

первичной культуре фибробластов или в клетках волосяных лу-

ковиц. В большинстве мутантных клеточных линий количество

мРНК нормально, а белок отсутствует. У части пациентов хотя

и транскрибируется достаточно много мРНК, но в этих молеку-

лах обнаруживаются структурные и функциональные аномалии. В

небольшом проценте случаев у больных не удается выявить ни

белка, ни мРНК.

В 15% хромосом у больных с синдромом Леш Нихана ген

HPRT вовлечен в крупные структурные перестройки, корторые

могут быть выявлены методами Саузерн или Нозерн блот-гибри-

дизации. Синдром Леш Нихана одно из первых моногенных

наследственных заболеваний, для которых была проведена моле-

кулярная идентификация точечных мутантных аллелей. Именно на

этой моделе впервые был разработан и опробован метод анализа

мутаций, основанный на расщеплении РНК-ДНК гибридов рибонук-

леазой А в местах негомологичноно спаривания (метод расщеп-

ления рибонуклеазой А - см.Главу VI, Gibbs, Caskey, 1987).

Комбинация методов блот-гибридизации и расщепления рибонук-

леазой А позволяет выявить до 50% мутаций. В настоящее время

в гене HPRT найдено более 100 спорадических мутаций, полови-

на которых - однонуклеотидные замены типа миссенс, нонсенс и

в сайтах сплайсинга. Около 40% мутантных хромосом имеют

структурные аномалии, в том числе крупные делеции, нехватки

отдельных зкзонов и микроделеции одного или нескольких нук-

леотидов. В HPRT-гене, практически, отсутствуют мутации, до-

мининирующие по частоте в каких-либо популяциях. Исключение

составляет нонсенс мутация R170TER, которая составляет около

15% всех нуклеотидных замен (Gibbs et al., 1989). Также как

и при гемофилиях мутации гена HPRT чаще возникают в сперма-

тогенезе, чем в оогенезе. Вероятность мутирования возрастает

с возрастом отца. Идентифицировано 3 HPRT-псевдогена в хро-

мосомах 3, 5 и 11 (Stout, Caskey, 1984).

Описаны редкие случаи синдрома Леш Нихана у гетерози-

готных девочек. При этом, как правило, болезнь развивается

вследствие неслучайной инактивации X-хромосомы, не содержа-

щей мутации (Ogasawara et al., 1989). Однако, у 3-х женщин -

облигатных носительниц мутаций в HPRT-гене, селективный тест

не выявил присутствия мутантных клеток в культивируемых фиб-

робластах и волосяных луковицах. В связи с этим высказано

предположение, что определенные мутации гена HPRT находятся

в неравновесном сцеплении с неидентифицированной летальной

мутацией в X-хромосоме, что и приводит к селекции клона кле-

ток только с одной (мутантной или немутантной по гену HPRT)

X-хромосомой (Marcus et al., 1992).

Молекулярная диагностика болезни Леш-Нихана возможна

прямыми и непрямыми методами. Прямой вариант основан на про-

ведении обратной транскрипции мРНК, ее амплификации,

SSCP-анализе одноцепочечных ДНК фрагментов с их последующим

секвенированием (см.Глава VI). Косвенная диагностика пре-

дусматривает маркирование мутантной хромосомы при помощи по-

лиморфных сайтов (в частности, локуса DXS52 - зонд

St14/TaqI).

Как мы уже отмечали (Главы VII,VIII), первая трансген-

ная животная модель наследственного заболевания человека,

сконструированная путем направленного переноса мутациий в

культивируемые эмбриональные стволовые клетки, была получена

для синдрома Леш-Нихана (Hooper et al., 1987; Kuehn et al.,

1987). На этой моделе впервые была проведена генокоррекция

наследственного дефекта in vivo. Эти успехи в значительной

степени связаны с существованием селективных сред, позволяю-

щих вести автоматический отбор мутантных клеток. Вообще,

синдром Леш-Нихана представляет собой идеальную систему не

только для изучения пуринового метаболизма, но и для решения

многих теоретических вопросов биологии и медицины

(Seegmiller, 1989; Maraus et al., 1993; Boyel et al., 1993).

Сложность генокоррекции заболевания, однако, заключается в

необходимости обеспечения эффективной доставки гена HPRT

(или его кДНК) непосредственно в мутантные нервные клет-

ки. Эта проблема еще не решена. Поэтому реальные клинические

программы генотерапии этого заболевания на сегоднешний день

отсутствуют (см.Главу IX).

10.4.8 Болезнь Вильсона-Коновалова.

Болезнь Вильсона-Коновалова (БВК) - гепатолентикулярная

дегенерация - аутосомно-рецессивное заболевание, обусловлен-

ное наследственным дефектом одной из медь-транспортирующих

АТФаз. У больных резко снижена концентрация основного

медь-содержащего белка плазмы крови - церулоплазмина и в

меньшей степени - цитохромоксидазы, еще одного белка, участ-

вующего в метаболизме меди. Выделяют, по крайней мере, 3

формы БВК (Cox et al. , 1972). При редкой атипичной форме,

предположительно Германского происхождения, у гетерозигот

содержание церулоплазмина снижено, по крайней мере, в два

раза. При двух других, типичных формах - славянской и юве-

нильной, содержание церулоплазмина у гетерозигот находится в

пределах нормы. Славянский тип БВК характеризуется сравни-

тельно поздним началом и преимущественно неврологической

симптоматикой. Ювенильная форма чаще встречается в Западной

Европе и ведущими в этиологии заболевания являются печеноч-

ные нарушения. Среди евреев-ашкенази встречается БВК с позд-

ним началом и почти нормальным содержанием церулоплазмина в

сыворотке крови больных.

Ген БВК, идентифицированный в 1993г. независимо сразу в

2х лабораториях США, представляет собой медь-транспортирую-

щую АТФазу P типа с 6-ю металл-связывающими районами. Ген

имеет 60% гомологию по нуклеотидному составу с ранее иденти-

фицированным геном АТФ-азы (АТР7А), мутантном при болезни

Менкеса (Bull et al., 1993; Petruchin et al., 1993; Tanzi et

al., 1993). По аналогии с геном болезни Менкеса, также

обусловленной нарушением транспорта меди, ген БВК назван

АТР7В. Два пациента с БВК оказались гомозиготными по 7-нукле-

отидной делеции в кодирующей области гена ATP7B , что дока-

зывало его идентичность гену БВК (Petruchin et al, 1993).

Ген экспрессируется в клетках печени, мозга, почках, лимфо-

узлах. Типичным для экспрессии АТР7В оказался альтернативный

сплайсинг двух и более экзонов центральной части гена

(6, 7, 8, 12 и 13).

Кодируемый ATP7B-геном белок содержит несколько мемб-

ранных доменов, АТФ-консенсусную последовательность, сайт

фосфорилирования и, по крайней мере, 2 медь-связывающих сай-

та. В мозге, печени, почках и ломфоузлах обнаружены изоформы

белка, соответствующие продуктам альтернативного сплайсинга

гена АТР7В. Их назначение и функции пока неизвесты. В гене

АТР7В идентифицированы полиморфные микросателлитные маркеры,

а также около 10 полиморфных сайтов рестрикции. В настоящее

время в гене АТР7В идентифицированы более 30 мутаций, в том

числе 14 мелких делеций/инсерций, 2 - нонсенс мутации, 15 -

миссенс мутаций, 3 - сплайсинговые мутации. Диагностическую

ценность для европейцев представляют мутации His1070Gln и

Gly1267Lys, зарегистрованные в 28% и 10% всех мутантных хро-

мосом, соответственно (Thomas et al., 1995).

В заключении данного раздела представляется целесооб-

разным кратко рассмотреть другие достаточно частые моноген-

ные заболевания, для которых показана и проводится молеку-

лярная диагностика, в том числе и пренатальная, в других ме-

дико-генетических центрах России и, прежде всего, в Лабора-

тории молекулярной диагностики Институтата клинической гене-

тики РАМН (Москва).

10.4.9 Адрено-генитальный синдром.

Адрено-генитальный синдром - (врожденный дефицит

21-гидроксилазы) - достаточно распространенное аутосомно-ре-

цессивное заболевание. Частота "классических" форм 1:10 000

новоржденных, "неклассической" - около 1% в популяции. В за-

висимости от характера нарушения функции гена и, соот-

ветственно клинических проявлений "классическая форма" под-

разделляется на два варианта: 1. летальная сольтеряющая фор-

ма; 2. нелетальная - вирилизирующая форма, связанная c из-

бытком андрогенов (Morel, Miller, 1991).

В локусе 6р21.3, внутри сложного супергенетического

комплекса HLA идентифицированы два тандемно расположенных

21-гидроксилазных гена - функционально активный CYP21B и

псвдоген - CYP21А, неактивный вследствие делеции в 3-м экзо-

не, инсерции со сдвигом рамки считывания в 7-м экзоне и

нонсенс мутаций - в 8-м экзоне. Ген и псевдоген разделены

смысловой последовательностью гена С4В, кодирующей 4-й фак-

тор комплемента. Оба гена состоят из 10 экзонов, имеют длину

3,4 кб и отличаются только по 87 нуклеотидам. Высокая сте-

пень гомологии и тандемное расположение указвают на общность

эволюционного происхождения этих генов. Любопытно отметить,

что такие же тандемно расположенные гены 21-гидроксилазы

(называемые также Р450с21) обнаружены и у других млекопитаю-

щих, причем у мышей, в отличие от человека, активен только

ген CYP21A, но не CYP21B, тогда как у крупного рогатого ско-

та функционально активны оба гена.

Белок- 21-гидроксилаза ( Р450с21- микросомальный цитох-

ром 450) обеспечивает превращение 17-гидроксипрогестерона в

11-дезоксикортизол и прогестерона - в дезоксикортикостерон.

В первом случае возникает дефицит глюкокортикоидов и, прежде

всего, кортизола, что в свою очередь стимулирует синтез

АКТГ, и ведет к гиперплазии коры надпочечников (вирилирующая

форма). Нарушение превращения прогестерона в дезоксипрогесте-

рон ведет к дефициту альдостерона, что в свою очередь нару-

шает способность почек удерживать ионы натрия и приводит к

быстрой потере соли плазмой крови (соль теряющая форма).

Как и в случае гемофилии А, наличие рядом с кодирующим

геном гомологичной ДНК последовательности зачастую ведет к

нарушениям спаривания в мейозе и, как следствие этого, к

конверсии генов (перемещения фрагмента активного гена на

псевдоген), либо к делеции части смыслового гена. В обоих

случаях функция активного гена нарушается. На долю делеций

приходится около 40% мутаций, на долю конверсий - 20% и при-

мерно 25% составляют точечные мутации. Согласно отечествен-

ным данным в случае наиболее тяжелой сольтеряющей формы АГС,

на долю конверсий приходится более 20% мутантных хромосом,

на долю делеций - около 10% (Evgrafov et al., 1995).

Непрямая диагностика АГС возможна с помощью типирования

тесно сцепленных с геном CYP21B аллелей HLA A и HLA B генов,

а также алелей гена HLA DQA1. Прямая ДНК диагностика АГС

основана на амплификакции с помощью ПЦР отдельных фрагментов

генов CYP21B и CYP21A, их рестрикции эндонуклеазами HaeIII

или RsaI и анализе полученных фрагментов после электрофореза

(Evgrafov et al., 1995).

10.4.10 Спинальная мышечная атрофия.

Спинальная мышечная атрофия (СМА) - аутосомно-рецессив-

ное заболевание, характеризуется поражением моторных нейро-

нов передних рогов спинного мозга, в результате чего разви-

ваются симметричные параличи конечностей и мышц туловища.

Это - второе после муковисцидоза наиболее частое летальное

моногенное заболевание (частота 1: 6 000 новорожденных).

СМА подразделяется на три клинические формы. Тип I. Острая

форма (болезнь Верднига-Гоффмана), проявляется в первые 6 ме-

сяцев жизни и приводит к смерти уже в первые два года; Тип

II. Средняя (промежуточная) форма, пациенты не могут стоять,

но обычно живут более 4-х лет; Тип III. Ювенильная форма

(болезнь Кугельберга-Веландера) - прогрессирующая мышечная

слабость после 2-х лет. Все три формы представляют собой ал-

лельные варианты мутаций одного гена SMN (survival motor

neurons), картированного в локусе D5S125 (5q13) и идентифи-

цированного методом позиционного клонирования (см.Главу III)

в 1995г (Lefebvre et al. 1995). В этой пока единственой ра-

боте показано, что ген SMN размером всего 20 000 п.о.состоит

из 8 экзонов. мРНК этого гена содержит 1 700 п.о. и кодирует

ранее неизвестный белок из 294 аминокислотных остатков с

молекулярным весом 32 КилоДальтона.

Ген дуплицирован. Его копия (возможно вариант псевдоге-

на) располагается несколько ближе к центромере и отличается

от гена SMN наличием 5-и точечных мутаций, позволяющих отли-

чить оба гена путем амплификации экзонов 7 и 8 и их исследо-

ванием методом SSCP анализа (см.Главу IV). Ген назван

сBCD541, по аналогии с первоначальным вариантом названия для

теломерной копии, т 4о 0е 4сть 0гена SMN, tBCD541. Ген

cBCD541

экспрессируется, но в отличие от гена SMN его сДНК подверга-

ется альтернативному сплайсингу с утратой экзона 7.

Отсутствие гена SMN (tBCD541) у 93% больных (213 из 229),

его разорванная (interrupted) структура у 13 обследованных

пациентов (5.6%) и наличие серьезных мутаций у оставшихся

3-х больных дали основание именно данную теломерную копию

гена считать ответственной за заболевание. Существенно отме-

тить, что центромерная копия гена обнаружена у 95 4. 05% боль-

ных, 4тогд 0а 4как 0 отсутств 4ует она 0 только у 4,4% 4

пациентов 0.

В непосредственной близости от теломерного конца гена

SMN идентифицирован еще один ген - ген белка-ингибитора зап-

рогаммированной гибели нейронов (neuronal apoptosis

inhibitory protein -NAIP). При тяжелых клинических формах

СМА (Тип I), обусловленных делециями, по-видимому, нередко

происходит утрата гена NAIP.

Согласно гипотезе авторов СМА возникает при гомозигот-

ном состоянии мутаций (обычно-делеций) в гене SMN, 4при этом

различ 4ия между 0форм 4ами 0СМА определяются двумя основными

фак-

торами: 1. числом копий гена cBCD541 (две - в случае Типа I

и четыре (возникающих вследствие конверсии между SMN и

cBCD541) - в случае Типа III), 2. наличием или отсутствием

ген 4а 0NAIP. 4С 0реди всех обследованных СМА-больных

4не

4обнаружены 0случа 4и одновременной 0делеции обоих

гомологичных

генов 4- 0SMN (tBCD541) и сBCD541 4, что 0указывает, по

мнению

авторов, 4на то, 0что такая аберрация должна проявляться как

доминантная леталь еще в эмбриогенезе.

Некоторые положения этой, безусловно, основополагающей

работы французских авторов, по-видимому, еще требуют уточне-

ния, однако, уже сейчас она сделала возможной прямую молеку-

лярную диагностику СМА у 98,6% больных. С этой целью прово-

дится амплификация экона 7, который отсутствует у подавляю-

щего большинства больных. Нормальный экзон 7 (ген SMN) диф-

ференцируют от мутантного варианта (ген cBCD541) c помощью

SSCP анализа. При необходимости возможна косвенная диаг-

ностика - ПЦР анализ динуклеотидных (CA) повторов ДНК ло-

кусов D5S125; D5S112; D5S127; ПДРФ-анализ с фланкирующими

ДНК-зондами MU, 105-153RA; 153-6741 GT.

10.4.11 Атаксия Фридрейха.

Атаксия Фридрейха (АФ) - сравнительно редкое (1 : 22

-25 000) аутосомно-рецессивное заболевание, характеризующе-

еся прогрессивной дегенерацией нервных клеток мозжечка. Ген

АФ не идентифицирован, но достаточно точно картирован на

хромосомных (9q13-q21) и физических картах ДНК-маркеров. На-

иболее тесное сцепление гена АФ показано для локуса D9S5

(зонд 26Р). Сконструированы космидные библиотеки и

составлены подробные физические карты области 4 0геномной ДНК

хромосомы 9, включающей локус D9S7 и, предположительно, ген

АФ. Определено положение гена ФА по отношению к другим флан-

кирующим молекулярным маркерам (Fujita etal., 1991; Wilkes

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35


ИНТЕРЕСНОЕ



© 2009 Все права защищены.