реферат, рефераты скачать
 

Литература - Другое (книга по генетике)


также при нарушениях регуляции их работы, выражающихся в ги-

перпродукции или в зкспрессии в нетипичномном месте или в

несвойственный момент жизнедеятельности клетки, они начинают

вести себя как онкогены, стимулируя неконтролируемое размно-

жение и пролиферацию определенных клеточных клонов, что и

может, в конечном счете, привести к формированию опухоли.

Раздел 2.4 Современное определение понятия "ген",

транскрипция, регуляторные элементы генов.

Около 10-15% генома человека представлено уникальными

транскрибируемыми последовательностями, составляющими основу

структурных генов (Льюин, 1987). В настоящее время в понятие

"ген" включается не только его транскрибируемая область -

экзоны + интроны, но также фланкирующие последовательности -

лидерная, предшествующая началу гена, и хвостовая нетрансли-

руемая область, раположенная на 3' конце гена (Рис.2.1 ). В

отличие от генов прокариот гены человека редко представлены

одной непрерывной последовательностью и в подавляющем боль-

шинстве имеют прерывистую структуру. Относительно короткие

кодирующие участки - зкзоны, чередуются с длинными интрона-

ми, которые транскрибируются и входят в состав первичного

РНК-продукта, но затем при процессинге первичного РНК

-транскрипта они вырезаются и не участвуют в трансляции.

Процесс вырезания интронов из первичных транскриптов получил

название сплайсинга. Таким образом, в зрелой мРНК интронные

области отсутствуют, а экзоны составляют непрерывную кодиру-

ющую последовательность. Размеры зрелых мРНК нередко в

десятки раз меньше первичных РНК-транскрипов и, соот-

ветственно, размеров самого гена.

Согласно классическим представлениям ген - это локус,

на хромосоме, мутации в котором реализуются на уровне фено-

типа. В молекулярной биологии ген трактуется как ассоцииро-

ванный с регуляторными последовательностями фрагмент ДНК,

соответствующий определенной единице транскрипции. Следова-

тельно, представления о гене формальных генетиков далеко не

полностью тождественны его физической единице и соотношения

между этими двумя понятиями достаточно запутанные. Отметим

некоторые причины этих противоречий. Известно, что мутации

одного гена могут приводить к совершенно разным и даже в ря-

де случаев к комплементарным фенотипам. Результаты прямого

секвенирования генома свидетельствуют о присутствии в нем

значительного большего числа генов, чем можно ожидать от ре-

зультатов мутационного анализа. Одна и та же последователь-

ность ДНК в геноме может кодировать несколько различных бел-

ков, что достигается за счет так называемого альтернативного

сплайсинга (образование разных мРНК из одного первичного

РНК-транскрипта). В крупных интронах ряда генов обнаружены

смысловые последовательности других генов ("ген в гене"),

считываемые в противоположном направлении. Транскрипционные

единицы генома могут перекрываться за счет наличия разных

промоторов. Наконец, благодаря соматической рекомбинации

структура транскрибируемых последовательнстей некоторых ге-

нов может быть различной в разных клонах клеток одного орга-

низма (Т-клеточные рецепторы). Ситуация с определением поня-

тия "ген" еще больше осложняется, если в это понятие вклю-

чать многочисленные регуляторные последовательности. Возни-

кает вопрос: "Как далеко от гена могут располагаться эти

последовательности, чтобы их можно было включать в структуру

гена?". Для многих целей оказывается удобным введенное в

последнее время понятие "считаемый ген"- counting gene.

Последний рассматривается как отдельная транскрибируемая

единица ДНК или её часть, которая может транслироваться в

одну или несколько взаимосвязанных аминокислотных последова-

тельностей. Поэтому последовательность, дающая две

транскрипционные единицы за счет альтернативного сплайсинга

и, как следствие, два разных белка учитывается как один ген.

Однако, если степень гомологии двух генопродуктов, имеющих

общий транскрибируемый участок, невелика, то эти последова-

тельности расцениваются как два разных гена (Fields et

al.,1994).

По своему функциональному назначению гены могут быть

разделены на две группы. Группа I представлена генами, коди-

рующими собственно белки; группа II - генами, контролирующи-

ми синтез рибосомальных, транспортных и ядерных РНК. По ха-

рактеру экспрессии гены также могут быть подразделены на две

группы - гены "домашнего хозяйства" (housekeeping genes),

продукты которых необходимы для обеспечения жизнедеятель-

ности любого типа клеток, и тканеспецифические гены, обеспе-

чивающие специализированные функции клеток, то есть гены,

функционально активные только в определенных типах клеток

(тканей) и только на определенных стадиях онтогенеза, так

называемые гены терминальной дифференцировки.

Считается, что средние размеры гена человека составля-

ют, примерно, от 10 до 30 кб. Однако, эта величина может ко-

лебаться от нескольких десятков до миллионов пар нуклеоти-

дов. Согласно последним данным, самый маленький из известных

генов- МСС-7, имеет размеры всего 21 п.о. (Gonzales-Pastor

et al.,1994), а самый болшой - ген дистрофина -2.2 мегабаз.

Гены отделены друг от друга протяженными промежутками -

спейсерами, содержащими в своем составе большое количество

повторяющихся последовательностей ДНК и нетранскрибируемые

уникальные последовательности.

Рассмотрим более подробно современные данные о числе

генов в геноме человека. Полученные разными методами оценки

этой величены приведены в Табл.2.1. Исходя из размера генома

(около 3 000 миллионов п.о.), и среднего размера одного гена

порядка 10 - 30 тыс.п.о. (Gilbert, 1992), общее число генов

должно быть порядка 100 000. При этом, как уже указывалось,

распределение генов на хромосомах крайне неравномерно. Уста-

новлено, что более 90% генов находится в Гимза -отрицатель-

ных районах метафазных хромосом, в так называемых R-бэндах

(Antequera,Bird ,1993). Проведенные недавно прямые исследо-

вания методом секвенирования показывают, что в R-бэндах их

число достигает 43-50 на один бэнд, а в Гимза- положительных

районах хромосом (G бэндах), - только 1-2 на 75-80 килобаз,

то есть всего в геноме можно ожидать около 70 000 генов.

Оценка числа генов по доле транскрибируемой части генома

(всего 12%) дает совсем маленькую величину - 20 000 генов

(Wagner et al.,1993). Методом исследования кинетики реассо-

циации РНК в культуре клеток число генов оценивается между

20 - 40 000 (Lewin, 1990). В то же время в клетках мозга

число различных мРНК по некоторым данным достигает 97 000

(Wagner et al.,1993). Наиболее точные подсчеты числа генов

человека проведены в последнее время и основаны на оценке

числа CpG островков (Табл.2.1). Известно, что в промоторной

области всех генов "домашнего хозяйства" и примерно у 40 %

генов терминальной дифференцировки, обеспечивающих специали-

зированные функции дифференцированных клеток, находятся об-

ласти коротких динуклеотидных CpG повторов. Разработаны мо-

лекулярные методы точной регистрации этих участков, которые

показали, что их число в геноме около 45 000, отсюда число

структурных генов оценивается в 67-70 000 ( Antequera, Bird,

1993). Практически такое же число генов (64 000) определено

недавно методом учета маркерных экспрессирующихся последова-

тельностей (expressed sequence tags) (Fields et al., 1994).

Таким образом, суммируя вышеизложенное, можно сделать вывод,

что в геноме человека содержится, в среднем, около 70-80 000

отдельных транскрибируемых ДНК последовательностей, то есть

генов.

Транскрипция гена начинается с 5' конца первого экзона,

где расположен сайт инициации транскрипциии. Определенной

гомологии между стартовыми сайтами разных генов не наблюда-

ется, но чаще всего они начинаются с нуклеотида А, окружен-

ного пиримидиновыми основаниями. На границах между экзонами

и интронами имеются консервативные канонические последова-

тельности, играющие существенную роль в обеспечении точности

вырезания интронов во время сплайсинга РНК. Все интронные

последовательности начинаются с динуклеотида GT и заканчива-

ются динуклеотидом AG, называемыми, соответственно, донорны-

ми и акцепторными сайтами сплайсинга. На 3' конце многих

структурных генов идентифицирована поли(А)-сигнальная после-

довательность (AATAAA), участвующая в процессе модификации

первичного РНК транскрипта и ответственная за альтернативный

сплайсинг мРНК, обеспечивающий синтез разных зрелых мРНК с

одного и того же первичного РНК транскрипта.

Транскрипция генов осуществляется с помощью фермента

РНК-полимеразы. Около 50-70% клеточного синтеза РНК обеспе-

чивается РНК-полимеразой I, локализованной в ядрышках и от-

ветственной за синтез генов рибосомальной РНК. РНК-полимера-

за II обеспечивает транскрипцию генов, кодирующих собственно

структурные белки. Этот фермент локализован в ядре (но не в

ядрышках). На его долю приходится 20 - 40% синтеза РНК.

РНК-полимераза III контролирует синтез ядерных и транспорт-

ных РНК (Льюин, 1987). На 1-м этапе РНК-полимераза связыва-

ется с двухнитевым участком ДНК и, расплетая его, делает

доступным спаривание смысловой нити ДНК с рибонуклеотидами

(Рис. 2.2). После того как первый нуклеотид РНК инкорпориру-

ется в сайт инициации транскрипции, полимераза начинает

продвигаться по нити ДНК в направлении 5'- 3', расплетая

двойные нити ДНК впереди себя и заплетая их позади. Этот

процесс продолжается до достижения терминирующего сигнала,

представляющего собой один или несколько терминирующих кодо-

нов. Затем молекулы РНК и фермента высвобождаются и двойная

спираль (дуплекс) ДНК полностью восстанавливается.

Для правильного начала синтеза РНК необходимо точное

взаимодействие РНК-полимеразы с молекулой ДНК. Этот процесс

контролируется промотором - специальной регуляторной после-

довательностью ДНК размерами около 75 п.о., локализованной,

как правило, в 5'-фланкирующей области гена. Иногда под

контролем одного промотора считывается несколько генов c об-

разованием единого первичного РНК-транскрипта. Промоторные

области различных генов довольно разнообразны по своему нук-

леотидному составу. Однако, почти для всех промоторов харак-

терно наличие консервативной последовательности из 7 основа-

ний на расстоянии 19-27 нуклеотидов слева от сайта инициации

транскрипции. Это, так называемый, TATA -бокс (блок Хог-

несса), обеспечивающий корректное расположение РНК полимера-

зы по отношению к стартовому сайту. На расстоянии 70 - 80

п.о. в направлении 5'-конца от начала транскрипции часто

расположена другая консервативная последовательность из 9

п.о. - CAAT- бокс, контролирующий начальное связывание

РНК-полимеразы. Мутации в TATA- или в CAAT-боксах могут су-

щественно влиять на скорость синтеза РНК. В 5'-фланкирующей

области гена на расстоянии до тысячи пар оснований от начала

его кодирующей части располагаются другие регуляторные

последовательности, так называемые инхансеры (усилители),

способные резко увеличивать продукцию гена за счет увеличе-

ния скорости транскрипции. Эти контролирующие элементы могут

работать независимо от их ориентации по отношению к сайту

инициации. Для некоторых генов найдены участки ДНК, подавля-

ющие транскрипцию, а также так называемые аттенюаторы (осла-

бители) - последовательности, лежащие между сайтом инициации

транскрипции и собственно геном. Они могут блокировать прод-

вижение РНК-полимеразы. Благодаря такому сложному механизму

контроля, достигается очень тонкая и эффективная регуляция

экспрессии генов практически на всех этапах транскрипции,

трансляции и образования функционально зрелого белка. Эти

механизмы более детально рассмотрены в других разделах.

Раздел 2.5 Изменчивость генома, полиморфные сайты рест-

рикции, ПДРФ-анализ.

Кодирующие и регуляторные области структурных генов на-

иболее консервативны в процессе эволюции, так как мутации в

них подвержены давлению жесткого естественного отбора.

Действительно, небольшие изменения в этих последователь-

ностях, даже замена одного основания, делеция или инсерция

нескольких нуклеотидов, могут привести к прекращению синтеза

белка или к потере его функции, что, как правило, драмати-

ческим образом сказывается на жизнеспособности особей, несу-

щих подобные мутации. Однако, около 90% генома человека

состоит из некодирующих последовательностей, подобных сател-

литным ДНК, умеренным повторам, интронам и спейсерным проме-

жуткам между генами. Эти участки значительно более изменчивы

и содержат множество, так называемых нейтральных мутаций или

полиморфизмов, не имеющих фенотипического выражения и не

оказывающих заметного влияния на жизнеспособность или репро-

дуктивные свойства особей и, таким образом, не подверженных

прямому давлению естественного отбора. Полиморфные локусы

являются удобными генетическими маркерами. На основе анализа

родословных можно проследить их наследование в ряду поколе-

ний, проанализировать сцепление друг с другом, с известными

генами и с анонимными последовательностями ДНК, то есть

использовать в качестве обычных менделевских признаков в

классическом генетическом анализе. Информативность полиморф-

ных локусов определяется уровнем их генетической изменчи-

вости в различных популяциях.

Экспериментально легко выявляются два варианта геномно-

го полиморфизма. Количественые изменения в области локализа-

ции мини- и микросателлитных последовательностей ДНК и ка-

чественные замены отдельных нуклеотидов, приводящие к появ-

лению полиморфных сайтов рестрикции. В первом случае измен-

чивость по числу повторенных "коровых " единиц создает серию

аллелей, характер и частота которых уникальны для каждого

вариабильного локуса. Полиморфизм в сайтах рестрикции связан

с присутствием точковых нейтральных мутаций, локализованых,

как правило, в уникальных последовательностях некодирующих

участков ДНК. Подобные мутации в силу вырожденности генети-

ческого кода (см.Глава 1) могут возникать и в кодирующих

последовательностях генов. Спонтанные мутации, возникающие в

сайтах узнавания для определенных рестриктаз, делают их ре-

зистентными к действию этих ферментов. Аналогичным образом,

при таких заменах могут создаваться новые сайты рестрикции.

Показано, что полиморфные локусы встречаются во всех хро-

мосомах с частотой приблизительно один полиморфный сайт на

300-500 п.о. Этот тип изменчивости ДНК был выявлен и исполь-

зован для молекулярной маркировки специфических участков ге-

нома исторически раньше по сравнению с вариабильными сател-

литными повторами (Botstein et al.,1980).

Мутационная изменчивость в сайтах рестрикции может быть

легко обнаружена по изменению длины рестрикционных фрагмен-

тов ДНК, гибридизующихся со специфическими ДНК-зондами. Ана-

лиз полиморфизма длины рестрикционных фрагментов, так назы-

ваемый ПДРФ-анализ (Restriction Fragment Length Polymorphism

-RFLP analysis), включает следующие этапы: выделение геном-

ной ДНК, ее рестрикцию специфической эндонуклеазой, элекро-

форетическое разделение образующихся фрагментов ДНК и иден-

тификацию фрагментов ДНК, содержащих полиморфный сайт рест-

рикции, путем блот-гибридизации по Саузерну (см.Главу 1).

При отсутствии рестрикции в полиморфном сайте на электрофо-

реграммах или радиоавтографах (в зависимости от типа мечения

ДНК-зонда) будет выявляться один крупный фрагмент, соот-

ветствующий по длине последовательности ДНК между двумя

соседними константными сайтами рестрикции для той же эндо-

нуклеазы. При наличии рестрикции в полиморфном локусе на

электрофореграмме будет присутствовать меньший по размерам

фрагмент, равный расстоянию между полиморфным сайтом рест-

рикции и одним из ближайших константных сайтов рестрикции. С

каким именно из двух фрагментов, прилегающих к полиморфному

локусу, будет происходить гибридизация зависит от локализа-

ции используемого для анализа ДНК-зонда. В частном случае

возможна гибридизация одновременно с двумя соседними рест-

рикционными фрагментами, если выбранный ДНК-зонд комплемен-

тарен последовательности, содержащей полиморфный сайт рест-

рикци. Однако, такие зонды очень редко используются на прак-

тике, так как длина рестрикционных фрагментов обычно в

десятки раз больше длины ДНК-зондов и далеко не всегда уда-

ется выделить и проклонировать фрагмент ДНК, содержащий по-

лиморфный сайт рестрикции. Поэтому в дальнейшем для простоты

изложения мы будем рассматривать только более общую ситуацию

и считать, что при отсутствии рестрикции в полиморфном сайте

ДНК-зонд гибридизуется с одним длинным фрагментом, а при на-

личии рестрикции гибридизующийся фрагмент имеет меньшую дли-

ну. Таким образом, при анализе ДНК особей, в обеих хромосо-

мах которых присутствует сайт рестрикции в полиморфной об-

ласти, на электрофореграмме будет выявлен только один бэнд в

нижней области геля, соответствующий более короткому фраг-

менту ДНК. У особей, гомозиготных по мутации, изменяющей по-

лиморфный сайт рестрикции, будет наблюдаться один бэнд в

верхней части геля, соответствующий фрагменту большей длины,

тогда как у гетерозигот проявятся оба эти бэнда (Рис. 2.3а).

ПДРФ-анализ может быть значительно упрощен в том случае,

если возможна специфическая амплификация участка ДНК, содер-

жащего полиморфный сайт рестрикции. Тестирование состояния

этого локуса возможно путем проведения ПЦР и рестрикции амп-

лифицированного фрагмента. При отсутствии сайта узнавания в

исследуемой области ДНК размеры амплифицированного фрагмента

не изменятся после его обработки соответствующей эндонуклеа-

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35


ИНТЕРЕСНОЕ



© 2009 Все права защищены.