реферат, рефераты скачать
 

Литература - Другое (книга по генетике)


Мутации, изменяющие длину рестрикционных фрагментов,

могут быть выявлены путем блот-гибридизации рестрицированной

геномной ДНК с соответствующими ДНК-зондами на стадиях гене-

тического анализа, предшествующих молекулярному клонированию

гена. К числу таких мутаций относятся достаточно протяжен-

ные, но не идентифицируемые цитогенетически, внутригенные

делеции, инсерции и дупликации, а также точечные мутации,

локализованные в сайтах рестрикции. Непременным условием ре-

ализации метода блот-гибридизации для поиска подобных мута-

ций является наличие ДНК-зонда, являющегося либо частью ге-

на, либо тесно сцепленной с этим геном клонированной

ДНК-последовательностью. При поиске таких мутаций геномную

ДНК от здорового донора и больного обрабатывают часто щепя-

щими рестриктазами, подвергают электрофорезу, блот-гибриди-

зации с меченым ДНК-зондом по стандартной схеме (Глава I) и

проводят сравнительный анализ расположения бэндов на ради-

оавтографе. Особенно информативными обычно оказываются рест-

риктазы Msp1 и Taq1, которые узнают сайты CGGG и TGGA, соот-

ветственно. Благодаря наличию СpG последовательностей эти

сайты особенно часто подвергаются спонтанному мутированию

(см.раздел 4.5). Наличие протяженных делеций, либо точечных

мутаций в сайтах рестрикции приводит к изменениям размеров

рестрикционных фрагментов. Целенаправленный поиск других то-

чечных мутаций (не затрагивающих сайты рестрикции) и неболь-

ших структурных аномалий возможен только для клонированных

генов с известной нуклеотидной последовательностью смысловых

участков ДНК. Методы идентификации подобных мутаций основа-

ны, главным образом, на использовании полимеразной цепной

реакции в её различных модификациях (см.Главу I, а также

разделы 4.5 и 4.6).

Для анализа мутантных аллелей, прежде всего, необходимо

иметь изолированные последовательности мутантного гена, ко-

торые могут быть получены либо путем клонирования или ампли-

фикации мутантной кДНК, либо за счет специфической амплифи-

кации отдельных экзонов, их частей и регуляторных областей

гена с использованием в качестве матрицы геномной ДНК паци-

ентов (Рис. 4.2). В первом случае отбирают клонированные

к-ДНК-последовательности мутантного гена, проводя скрининг

кДНК-овых библиотек, сконструированных из специфических тка-

ней или культур клеток больного. При этом в качестве зондов

используют кДНК-овые последовательности нормального гена.

Другим источником кодирующих последовательностей мутантного

гена может служить мРНК, изолированная из экспрессирующих

тканей или клеток больного. Мутантную кДНК получают путем

специфической амплификации перекрывающихся последователь-

ностей кодирующих областей гена, используя в качестве матри-

цы тотальную кДНК, полученную при обратной транскрипции изо-

лированной мРНК. Преимуществом этого подхода является то,

что праймеры для амплификации выбирают из экзонных областей,

нуклеотидные последовательности которых, как правило, стано-

вятся известны вскоре после идентификации и клонирования ге-

на. В ряде случаев изоляция мутантной мРНК затруднена в свя-

зи с недоступностью образцов тканей или органов, в которых

происходит экспрессия нужного гена (мозг, печень и др.). Од-

нако, обнаружение следовых количеств, так называемой, неза-

конной или эктопической мРНК во многих клетках и тканях, в

том числе в клетках крови, позволяет преодалевать и эти

трудности (Kaplan et al., 1992). Успех подобной процедуры

получения мутантной кДНК связан, в первую очередь, с разра-

боткой эффективных методов выделения и обратной транскрипции

мРНК с сохранением всех типов кДНК, включая те, для которых

соответствующие мРНК присутствуют в ничтожных концентрациях

(например, мРНК дистрофина при мышечной дистрофии Дюшенна

(см.Главу X). Единственным принципиальным ограничением мето-

дов детекции мутаций в кДНК-овых последовательностях явля-

ются невозможность выявления мутаций в регуляторных и инт-

ронных частях гена. Подобные мутации могут быть выявлены

только при анализе геномной ДНК пациента.

Получение геномной мутантной ДНК обычно не представляет

сложностей, так как она может быть изолирована из любых кле-

ток или тканей больного независимо от характера экспрессии

исследуемого гена. Однако, амплификация целых экзонов воз-

можна только при знании нуклеотидных последовательностей

фланкирующих интронных областей, из которых и производят

подбор специфических олигопраймеров. Секвенирование интронов

представляет собой достаточно трудоемкую задачу, решенную

далеко не для всех клонированных генов. Таким образом, к ог-

раничениям этого подхода следует отнести необходимость

достаточно полной информации о структуре гена и о его пер-

вичной нуклеотидной последовательности. Кроме того, объектом

тестирования могут быть лишь сравнительно небольшие области

гена, отсюда для получения более полной информации необходи-

ма амплификация многих экзонов.

Стратегия идентификации мутаций может быть различной и,

в конечном счете, определяется тем, имеем ли мы дело с ранее

неизвестными мутациями, либо целью анализа является скрини-

рование уже известных мутаций. В первом случае обектом

исследования чаще всего служат клонированные или амплифици-

рованные кДНК-овые последовательности, тогда как при молеку-

лярной диагностике известных мутаций, как правило, анализи-

руют амплифицированные фрагменты геномной ДНК.

Раздел 4.5. Первичная идентификация точечных мутаций.

Любые типы мутаций могут быть обнаружены путем прямого

секвенирования мутантной кДНК или отдельных экзонов и часто

первичный поиск нарушений в кодирующих областях гена осу-

ществляют именно таким образом. Сам метод секвенирования уже

был рассматрен ранее ( см.Главу I,раздел 1.6). Для некоторых

генов, имеющих небольшие размеры, метод прямого секвенирова-

ния с успехом применяется как основной метод сканирования

мутаций. Так, в частности, особенно удобным оказалось его

применение для детекции мутаций в сравнительно небольших по

размеру генах, таких, например, как ген фактора IX свертыва-

ния крови (гемофилия В). Использование эктопической мРНК для

получения амплифицированных кДНК-овых фрагментов открывает

особенно широкие возможности для применения метода прямого

секвенирования.

Разработаные в последние годы модификации методов ПЦР

значительно облегчили секвенирование амплифицированных фраг-

ментов и повысили его эффективность. Так, в частности, пред-

ложен вариант ассиметричной ПЦР, когда при амплификации кон-

центрация одного из олигопраймеров в несколько десятков раз

превосходит концентрацию другого праймера, в результате чего

синтезируется преимущественно только одна, нужная для секве-

нирования цепочка ДНК. Для этой же цели (получения одноцепо-

чечной ДНК) предложено использование магнитных частиц с

фиксированным на их поверхности стрептавидином. При этом

один из праймеров для проведения ПЦР метится биотином. Затем

к продуктам амплификации добавляют магнитные частицы с при-

шитым стрептавидином. Благодаря прочному связыванию биотин -

стрептовидин, меченая биотином последовательность ДНК фикси-

руется на магнитных частицах. С помощью щелочного лизиса с

частиц удаляют вторую немеченую комплементарную последова-

тельность ДНК, которую и используют для секвенирования. Еще

в одном варианте амплификацию проводят в присутствии прайме-

ров, несущих сайт узнавания для фермента Т7 - РНК полимера-

зы. После амплификации в системе in vitro проводят

транскрипцию амплификата с помощью Т7-РНК полимеразы и обра-

зовавшуюся одноцепочечную РНК используют для секвенирования

- метод GAWTS (genome amplification with transcript

sequences).

Однако, в общем случае секвенирование полноразмерной

кДНК или всех экзонов для генотипирования мутаций у отдель-

ных пациентов достаточно трудоемко, дорого и требует много

времени. Поэтому на практике чаще проводят предварительный

отбор более простыми методами амплифицированных, а иногда

клонированных фрагментов ДНК, предположительно содержащих

мутации, а затем секвенируют только эти участки ДНК. Методы

поиска фрагментов ДНК, предположительно содержащих мутации,

основаны на сравнительном анализе мутантных и нормальных

последовательностей по целому ряду физических и химических

характеристик, которые в значительной степени варьируют в

зависимости от типа мутационного повреждения. Следует под-

черкнуть, что независимо от метода детекции мутации и прак-

тически независимо от её природы (замены нуклеотидов, деле-

ции, дупликации и пр.) точные молекулярные характеристики

каждой мутации могут быть получены только путем прямого сек-

венирования. При наличии в амплифицированном фрагменте из-

вестных сайтов рестрикции положение мутации может быть пред-

варительно уточнено. Для этого продукты амплификации разре-

зают соответствующей эндонуклеазой и исследуют более корот-

кие фрагменты.

Наиболее просто обнаруживаются мутации, изменяющие дли-

ну амплифицированных фрагментов, так как подобные нарушения

легко выявляются при электрофоретическом анализе. Так, про-

тяженные делеции, захватывающие целые экзоны, могут быть вы-

явлены по изменению длины рестрикционных фрагментов, гибри-

дизующихся со специфическими ДНК-зондами. Более простая и

эффективная методика выявления таких мутаций в генах, сцеп-

ленных с полом, основана на одновременной амплификации раз-

личных экзонов, наиболее часто вовлекаемых в подобные пе-

рестройки, так называемый мультиплексный вариант ПЦР. Разни-

ца в размерах и числе амплифицированных фрагментов позволяет

легко идентифицировать такие мутации на электрофорезе

(Рис.4.2). Особенно широко этот метод используется для иден-

тификации делеций в гене дистрофина, на долю которых прихо-

дится около 60% всех мутаций, приводящих к миодистрофии Дю-

шенна (см.Главу X). При отсутствии делеций все амплифициро-

ванные фрагменты после электрофоретического разделения и ок-

рашивания можно наблюдать в виде отдельных полос. Если в

исследуемой ДНК какие-то из экзонов делетированы, будут

отсутствовать и соответствующие им полосы на электрофорег-

рамме (Рис.4. 2). Выбирая специфические участки гена для ам-

плификации, можно оценить размер делеции с точностью до от-

дельных экзонов, а также определить ее внутригенную локали-

зацию.

Метод этот, однако, не обнаруживает подобные делеции,

находящиеся в гетерозиготном состоянии или локализованные в

аутосомных генах, так как нормальная гомологичная последова-

тельность геномной ДНК может служить матрицей для амплифика-

ции любых фрагментов. Данный подход применим к анализу деле-

ций в аутосомных генах только в тех случаях, когда возможно

дополнить ПЦР количественной оценкой результатов амплифика-

ции - так называемая количественная ПЦР. Оригинальный метод

идентификации подобных делеций у гетерозигот основан на

использовании в качестве матричной ДНК для ПЦР кДНК, полу-

ченной путем обратной транскрипции из эктопической мРНК или

из мРНК, изолированной из экспрессирующих данный ген тканей

или культур клеток пациента. В отличие от нормального гомо-

лога, в мутантной молекуле кДНК граничащие с делецией экзоны

сближены. Если в качестве олигопраймеров для ПЦР будут выб-

раны последовательности из этих областей гена, только му-

тантная кДНК будет служить матрицей для амплификации неболь-

шого участка между праймерами из фланкирующих делецию экзо-

нов. В нормальной последовательности кДНК этот участок может

быть слишком велик, для того чтобы прошла амплификация.

Практически, для обнаружения гетерозигот по протяженным

внутригенным делециям проводят мультиплексную ПЦР с исполь-

зованием системы олигопраймеров, обеспечивающих амплификацию

фрагментов, полностью перекрывающих всю молекулу кДНК. Нали-

чие делеции регистрируют по появлению продуктов амплификации

необычного размера.

Небольшие делеции и вставки нуклеотидов не приводят к

отсутствию амплифицированных фрагментов ДНК, но изменяют их

размеры. Эти изменения могут быть зарегистрированы при

электрофорезе продуктов амплификации в полиакриламидном или

агарозном гелях (Рис.4.3). Именно этот метод используется

для детекции наиболее часто встречающейся мутации в гене му-

ковисцидоза - делеции трех нуклеотидов ^F508. После выявле-

ния различий между нормальной и мутантной ДНК по длине рест-

рикционных или амплифицированых фрагментов гена необходимо

провести секвенирование необычного фрагмента, с целью опре-

деления изменений в первичной структуре мутантной ДНК после-

довательности по сравнению с нормальной.

При мутациях гена, представляющих собой замену одного

или нескольких нуклеотидов, длины амплифицированных фрагмен-

тов остаются постоянными, однако, некоторые физико-хими-

ческие свойства мутантных молекул ДНК меняются. Так, напри-

мер, при гибридизации однонитевых ДНК, комплементарных нор-

мальной и мутантной нитям ДНК, возникают структурные наруше-

ния в месте негомологичного спаривания. С учетом этих осо-

бенностей разработаны различные варианты поиска мутантных

фрагментов ДНК и идентификации в них точечных мутаций. Веду-

щими из этих методов являются: метод анализа конформационно-

го полиморфизма однонитевой ДНК - SSCP, денатурирующий гра-

диентный гель-электрофорез - DGGE, метод химического расщеп-

ления некомплементарных сайтов (CMC), метод гетеродуплексно-

го анализа (HA) и, наконец, собственно метод секвенирования

Основные характеристики этих методов приведены в Табл.4.3

Таблица 4.3. Преимущества и недостатки основных методов пер-

вичной идентификации мутаций.

-------T---------T--------T------------T----------------¬

¦метод ¦ размер ¦ %% ¦ точность ¦ сканирование ¦

¦ ¦фрагмента¦детекции¦картирования+---------T------+

¦ ¦ (п.о.) ¦мутаций ¦ мутации ¦ экзонов ¦ кДНК ¦

¦ ¦ ¦ ¦ ¦ ¦ ¦

+------+---------+--------+------------+---------+------+

¦SSCP ¦ 250 ¦ 80% ¦ нет ¦ +++ ¦ + ¦

¦DGGE ¦ 600 ¦ 95% ¦ нет ¦ ++ ¦ ++ ¦

¦СМС ¦ 1700 ¦>95% ¦ да ¦ + ¦ +++ ¦

¦PCR DS¦ 500 ¦>99% ¦ да ¦ ++ ¦ ++ ¦

¦НА ¦ 300 ¦ 80% ¦ нет ¦ ++ ¦ + ¦

L------+---------+--------+------------+---------+-------

"+" - применимость метода для сканирования геномной ДНК и

кДНК

SSCP (Single Strand Conformation Polymorphism) - метод

анализа конформационного полиморфизма однонитевой ДНК, пред-

ложенный (Оrita et al.1989, Сlavac, Dean, 1993) основан на

регистрации различий в электрофоретической подвижности одно-

нитевых ДНК, одинаковых по величине, но различающихся

вследствие нуклеотидных замен по пространственной организа-

ции молекул (Рис 4.4). Скручивание или конформация небольших

однонитевых ДНК существенно зависит от их нуклеотидной

последовательности, так что замена даже одного основания в

молекулах одинакового размера приводит к изменению их прост-

ранственной структуры. Метод включает амплификацию специфи-

ческих сегментов ДНК размером от 50 до 300 пар оснований,

обычно в присутствии меченых трифосфатов, денатурацию обра-

зовавшихся продуктов ПЦР и нативный высокоразрешающий элек-

рофорез в полиакриламидном геле. Иногда амплификацию прово-

дят без использования метки, но тогда для лучшего разделения

ДНК и однозначной идентификации бэндов на электрофореграмме

используют специальные гели - Hydrolink либо MDE (AT

Biochem,USA), а также более чувствительные по сравнению с

этидиумом бромидом методы окрашивания, такие как окраска се-

ребром. На процесс конформации оказывают влияние различные

внешние факторы - температура, концентрация акриламида и

глицерина в геле, ионная сила буферных растворов

(Сlavac,Dean,1993). Оптимальный подбор этих параметров поз-

воляет эффективно разделять амплифицированные фрагменты ДНК,

различающиеся даже всего на один нуклеотид. Конформационный

метод выявления точечных мутаций быстро получил широкое

распространение благодаря своей простоте и возможности обна-

руживать любые типы замен. Эффективность детекции мутаций

при размерах амплифицируемого фрагмента менее 200 п.о.

составляет 70-95%, но при длине фрагмента, превышающей 400

п.о., вероятность обнаружения мутаций уменьшается до 50%.

DGGE (Denaturation Gradient Gel Electrophoresis) - ме-

тод денатурирующего градиентного гель-электрофореза, основан

на зависимости свойств плавления (или денатурации) небольших

двухнитевых молекул ДНК от их нуклеотидной последователь-

ности, а точнее от соотношения A-T и G-C пар в исследуемых

фрагментах (Майерс и др.,1990; Fodde, Losekoot, 1994). Объ-

ясняется это тем, что G-C связь более прочная по сравнению

со связью между нуклеотидами A и T. Подобные различия в ди-

намике плавления могут быть выявлены путем сравнения подвиж-

ности нормальных и мутантных двухнитевых фрагментов ДНК при

их электрофорезе в денатурирующих условиях ( Рис.4.5). Гра-

диент денатурации достигается разницей температур, различной

концентрации мочевины или формальдегида в гелях. При этих

условиях одинаковые по величине двухнитевые молекулы ДНК,

отличающиеся по нуклеотидной последовательности, денатуриру-

ют по -разному . Разработан компьютерный алгоритм, позволяю-

щий предсказывать характер плавления в зависимости от нукле-

отидной последовательности (Lerman, Silverstein, 1987). При

электрофорезе амплифицированных двухнитевых фрагментов ДНК в

геле с линейно возрастающим градиентом концентраций денату-

рирующих агентов плавление нитей ДНК происходит в строго

специфичной для данной последовательности области, эквива-

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35


ИНТЕРЕСНОЕ



© 2009 Все права защищены.