реферат, рефераты скачать
 

Литература - Другое (книга по генетике)


лентной температуре плавления - tm, то есть такой температу-

ре, при которой каждая пара оснований с 50%-ой вероятностью

может соединиться или разойтись. После начала плавления

продвижение двухнитевого фрагмента ДНК в геле резко замедля-

ется вследствие сложной пространственной конфигурации моле-

кул, причем эта задержка будет длиться до тех пор, пока не

наступит полная денатурация ДНК. В результате происходит

разделение фрагментов ДНК, различающихся по нуклеотидному

составу. Таким способом удается идентифицировать лишь около

50% однонуклеотидных замен в фрагментах ДНК длиной от 50 до

нескольких сотен нуклеотидов. Связано это с тем, что при

прохождении ДНК через гель может начаться частичная денату-

рация концов молекул еще до достижения оптимальной области

плавления. Поэтому мутации, локализованные вблизи концов ам-

плифицированных участков ДНК, оказывают меньшее влияние на

процесс плавления и поэтому могут не выявляться. Эффектив-

ность обнаружения мутаций с помощью градиентного денатуриру-

ющего электрофореза может быть существенно повышена за счет

присоединения к концам амплифицированной геномной ДНК синте-

тических фрагментов GC-нуклеотидов, длиной в несколько

десятков пар оснований. Такие монотонные тугоплавкие концы

выполняют роль своеобразных зажимов и резко увеличивают

шансы обнаружения для всех точечных мутаций, независимо от

их локализации внутри исследуемого фрагмента ДНК. Эта моди-

фикация делает метод очень чувствительным (см.Таб.4.2). В

отличии от SSCP он пригоден для более крупных амплифициро-

ванных фрагментов ДНК. При исследовании фрагментов до 600

п.о. эффективность выявления мутаций этим методом достигает

95%. Чаще всего DGGE -метод применяется для скрининга мута-

ций в амплифицированных экзонах, при этом в качестве матрицы

используют геномную ДНК. Этот метод может быть с успехом

применен также для анализа индуцированных мутаций, так как

позволяет улавливать точечные мутации, возникшие даже в од-

ной из 100 обработанных мутагеном клеток. К недостаткам ме-

тода следует отнести техническую сложность получения равно-

мерного градиента денатурирующего агента в полиакриламидном

геле, а также высокую стоимость искусственно синтезированных

GC-концов.

HA (Неteroduplex analysis) - гетеродуплексный анализ поз-

воляет идентифицировать мутации, находящиеся в компаунде или

в гетерозиготном состоянии. Следует заметить, что у подавля-

ющего большинства пациентов с генными болезнями, наследуемы-

ми по аутосомно-рецессивному типу, мутации в гомологичных

хромосомах находятся в компаунде, то есть в каждом из гомо-

логичных генов имеются функционально значимые нарушения, но

их молекулярная природа и внутригенная локализация различны.

Исключение составляют лишь мажорные мутации, частота которых

в популяции достигает десятков процентов. Примерами таких

мутаций являются ^F508 в гене муковисцидоза или R408W мута-

ция в гене фенилкетонурии. Принцип HA-метода заключается в

том, что при амплификации относительно небольших фрагментов

генов гетерозигот или гомозиготных компаундов мутация может

быть локализована лишь в одной из гомологичных нитей матрич-

ной ДНК. Поэтому в амплификационной смеси наряду с двумя ти-

пами гомодуплексов образуются гетеродуплексы между нормаль-

ной и мутантной цепочками ДНК. Такие гетеродуплексные моле-

кулы ДНК имеют иную электрофоретичеcкую подвижность по срав-

нению с гомодуплексами (не отличающимися между собой по под-

вижности) за счет конформационных особенностей в местах

несовпадения нуклеотидов (mismatch) (Рис.4.6). Эти различия

могут быть обнаружены при электрофорезе в обычном полиакри-

ламидном геле. Значительно более эффективное разделение гомо-

и гетеродуплексов может быть достигнуто при использовании

новых вариантов гелей - Hydrolink либо MDE. Вероятность

идентификации точечных мутаций этим способом на фрагментах

ДНК менее 300 п.о. достигает 80-90%. Детекция мутаций осу-

ществляется как изотопным, так и неизотопными методами

(Grompe, 1993).

CMC (Chemical Mismatch Cleavage) - метод химического

расщепления некомплементарных сайтов, основан на способности

некоторых химических агентов специфически разрывать нить ДНК

в месте локализации неспаренного основания (Рис.4.7). Так,

цитозин чувствителен к действию гидроксиламина, а тимин - к

действию тетроксида осмия. Некоторые модификации метода

используют чувствительность тимина и гуанина к карбодиимиду.

Последующая обработка пиперидином приводит к полному разрыву

молекулы ДНК в модифицированном сайте. Выявление мутаций

осуществляют с помощью меченых ДНК-зондов, соответствующих,

как правило, нормальным вариантам последовательности ДНК.

Такими зондами могут быть синтезированные олигонуклеотиды,

клонированные последовательности ДНК или амплифицированные

фрагменты (Cotton, 1990; Cotton, Malcolm, 1991).

При проведении исследования эталонную меченую ДНК сме-

шивают с избытком тестируемой ДНК (или РНК). Тестируемыми

образцами ДНК могут служить клонированные ДНК, обработанные

соответствующими эндонуклеазами, либо амплифицированные

фрагменты. Смесь нагревают до полной денатурации двухнитевых

молекул и затем охлаждают, чтобы создать условия для образо-

вания дуплексов. При наличии мутаций в тестируемых образцах

ДНК в гетеродуплексах, возникших в результате гибридизации

между однонитевыми молекулами эталонной и тестируемой ДНК,

образуются места негомологичного спаривания. После обработки

соответствующими химическими агентами идентификация и лока-

лизация мутантных сайтов в исследуемых участках ДНК прово-

дится путем электрофореза и авторадиографии. Появление уко-

роченных фрагментов ДНК на электрофореграмме (а точнее нео-

бычных бэндов в нижней части геля) свидетельствует о наличии

мутантного сайта, а определение размера укороченных фрагмен-

тов однозначно определяет локализацию этого сайта в исходной

тестируемой молекуле ДНК. Современные модификации метода

CMC позволяют идентифицировать до 95-100% мутаций

(Grompe,1993). Большими преимуществами этого метода являются:

(1) возможность исследовать протяженные участки ДНК - до 2

кб, (2) способность одновременно выявить и локализовать

несколько мутаций в одном фрагменте ДНК и (3) возможность

одновременно использовать несколько ДНК-зондов для поиска

мутаций - мультиплексный вариант методики. К числу недостат-

ков можно отнести высокую токсичность используемых хими-

ческих реактивов. Последняя может быть частично ослаблена

использованием карбодиимида для идентификации GT гетеродуп-

лексов.

Весьма близким по принципу к CMC- методу является метод

расщепления гетеродуплексов РНКазой А. С этой целью созда-

ются условия для образования гетеродуплексов между тестируе-

мой ДНК и комплементарной ей радиоактивно меченой РНК про-

бой. При обработке РНКазой А происходит разрезание молекул

РНК в местах нарушения спаривания оснований. Места точечных

мутаций определяются как и в случае СМС, по размерам образо-

вавшихся фрагментов после электрофореза и авторадиграфии.

Необходимость использования радиоактивно меченой РНК- пробы

и возможность детекции только около 50% точечных мутаций ли-

митируют широкое применение метода (Grompe, 1993).

Первичная идентификация мутаций может быть осуществлена

путем анализа нарушений не в нуклеотидной последовательности

гена, а в аминокислотной последовательности соответствующего

полипептидного продукта. Для этого выделяют тотальную мРНК

из лейкоцитов крови, проводят обратную транскрипцию, ампли-

фицировуют специфические экзоны кДНК (метод RT-PCR), встраи-

вают амплифицированную область ДНК в экспрессионную систему

и анализируют образовавшийся продукт. Этот метод особенно

эффективен при детекции мутаций в протяженных генах, содер-

жащих большое число экзонов, таких как ген миопатии Дюшенна

или ген нейрофиброматоза 1.

Раздел 4.6. Молекулярное сканирование известных мутаций.

Рассмотренные выше методы обнаружения мутаций предпола-

гают обязательное секвенирование содержащих их сегментов ДНК

с целью точной идентификации нуклеотидных нарушений, оценки

их фенотипического проявления и определения причастности к

развитию болезни. Поэтому они редко используются в практи-

ческой диагностике и при популяционном скрининге гетерози-

гот. После описания мутации появляется возможность ее анали-

за более простыми способами, не требующими секвенирования.

Как упоминалось выше, мутации, изменяющие длину амплифициро-

ванных фрагментов, могут быть выявлены с помощью нативного

электрофореза в полиакриламидном или агарозном гелях.

Из миссенс мутаций наиболее просто диагностируются те

замены нуклеотидов, которые приводят к исчезновению или об-

разованию сайта узнавания для какой-нибудь из рестриктаз.

Они выявляются по изменению длины амплифицированного фраг-

мента ДНК после его обработки соответствующей эндонуклеазой.

Поэтому сразу после идентификации мутации проводится компь-

ютерный поиск возможных сайтов рестрикции в месте локализа-

ции замены основания. Вероятность такого события довольно

велика, так как для каждой из нескольких сотен известных в

настоящее время рестрикционных эндонуклеаз сайтом узнавания

служит своя специфическая последовательность ДНК, средние

размеры которой составляют 5 - 6 нуклеотидов.

Если естественных рестрикционных сайтов в месте мутации

найти не удается, то такие сайты могут быть созданы

искусственно. В частности, разработана методика создания с

помощью ПЦР новых сайтов рестрикции в мутантных аллелях, но

не в аллелях дикого типа - метод ПЦР-опосредованного

сайт-направленного мутагенеза ( Ng et al., 1991; Eiken et

al.,1991). Для этого амплифицируемый участок ДНК выбирают

таким образом, чтобы 3'-конец одного из праймеров непосред-

ственно примыкал к мутантному сайту (Рис.4.8). Именно этот

праймер неполностью комплементарен матричной ДНК. В нем из-

меняют один из нуклеотидов с 3'-конца так, чтобы в сочетании

с нуклеотидом мутантного, но не нормального сайта в этом

месте образовывался сайт рестрикции для какой-нибудь из эн-

донуклеаз. Тогда после рестрикции и электрофореза продуктов

амплификации геномной ДНК у индивидуумов, не содержащих дан-

ную мутацию, на электрофореграмме будет присутствовать один

нерестрицированный фрагмент, у гетерозигот появится два до-

полнительных фрагмента, соответствующих по длине рестрициро-

ванным сегментам ДНК, и у гомозигот по мутации будут

присутствовать только эти два фрагмента.

Концептуально близким к этому варианту является метод

получивший название "амплификация рефрактерной мутационной

системы"- amplification refractory mutation system - ARMS. В

основе метода лежит неспособность Taq1 термофильной полиме-

разы к амплификации фрагмента при наличии несоответствия

(mismatch) между матричной ДНК и 3'-концом одного из олигоп-

раймеров (Newton et al.,1989; Bottema et al.,1990 ). Суть

метода заключается в оновременном проведении двух ПЦР, для

каждой из которых одним из праймеров служит аллель-специфи-

ческая мутантная или нормальная олигонуклеотидная последова-

тельность, соответственно. При этом в качестве второго прай-

мера для проведения двух реакций выбирают одну и ту же оли-

гонуклеотидную последовательность, так что в обоих случаях

могут амплифицироваться участки ДНК одинаковой протяжен-

ности.Мутантный сайт в аллель-специфических праймерах распо-

ложен не в центре, а ближе к 3'-концу, и чаще всего занимает

предпоследнюю позицию. При определенных условиях, важнейшим

из которых является концентрация ионов магния в растворе,

наличие сайта негомологичного спаривания в 3'-области прай-

мера препятствует началу синтеза ДНК. Таким образом, при на-

личии мутации в исследуемой матричной ДНК амплифицированные

фрагменты образуются только в том случае, если в качестве

аллель-специфического праймера выбирается мутантная последо-

вательность, тогда как при использовании нормального олиго-

нуклеотидного праймера ПЦР блокируется (Рис.4.9.). Метод на-

шел широкое применение для детекции мутаций при фенилкетону-

рии, бета-талассемии, муковисцидозе, при типировании генов

HLA системы. Однако, сложности в подборе праймеров и в выбо-

ре оптимального режима ПЦР ограничивают широкое применение

этого метода. Вместе с тем, его несомненным преимуществом

является возможность применения полностью автоматического

сканирования.

Таким же преимуществом обладают и методы детекции

состояния гена, основанные на лигировании синтетических оли-

гонуклеотидных зондов- OLA (oligonucleotide ligation assay).

При проведении этих реакций специфические ДНК или РНК после-

довательности исследуют путем использования их в качестве

матрицы для ковалентного связывания двух пар олигонуклеотид-

ных зондов (Landegren,1993). ДНК-зонды для лигирования под-

бирают таким образом, чтобы они были полностью комплементар-

ны нормальному фрагменту ДНК в области локализации мутации,

причем сама нуклеотидная замена должна находиться на стыке

двух праймеров. Обычно в один из зондов вводят радиоактивную

или флюоресцентную метку, а другой - метят биотином. После

гибридизации при строго стандартных условиях синтезированные

олигонуклеотидные последовательности сшивают ДНК-лигазами из

термофильных микроорганизмов. Такие ферменты работают при

высоких температурах и сохраняют свою активность в условиях,

необходимых для проведения денатурации молекул ДНК. При на-

личии мутации в тестируемой молекуле ДНК на конце одного из

зондов образуется сайт некомплементарного спаривания, не-

посредственно примыкающий к месту лигирования. Наличие тер-

минального неспаренного основания в смежно расположенных

последовательностях ДНК-зондов резко снижает скорость лиги-

рования и при определенных условиях проведения реакции сшив-

ки между зондами в этом случае не происходит. Метод включает

несколько последовательных циклов гибридизации, лигирования

и денатурации. Начиная со второго цикла, матричной ДНК для

гибридизации зондов наряду с тестируемой пробой служат также

лигированные последовательности. В дальнейшем проводят

электрофоретический анализ меченых однонитевых фрагментов

ДНК. Система успешно апробирована на мутациях глобиновых ге-

нов при серповидно-клеточной анемии и на мутации delF508 при

муковисцидозе.

Универсальным методом детекции замен оснований является

метод аллель-специфических олигонуклеотидов - ASO, который

включает амплификацию фрагментов ДНК и последующую дот- или

слот-гибридизацию с мечеными аллель-специфическими олигонук-

леотидами (Reiss, 1991). Для этого синтезируют два типа оли-

гонуклеотидных последовательностей обычно размером 19 пар

оснований, в которых мутантный сайт занимает центральное по-

ложение. Каждый из этих олигонуклеотидных зондов комплемен-

тарен нормальному или мутантному вариантам ДНК, соот-

ветственно. Условия гибридизации подбирают таким образом,

чтобы дуплексы образовывались только при полной комплемен-

тарности гибридных пар. В этих условиях амплифицированные

фрагменты ДНК без мутации будут гибридизоваться только с

нормальным зондом, ДНК гомозигот по мутации - только с му-

тантным и ДНК гетерозигот - с обоими олигонуклеотидами

(Рис.4.10). Для уменьшения перекрестной аллель-специфической

гибридизации в реакционную смесь добавляют 30-кратный избы-

ток конкурентного немеченого олигонуклеотидного ДНК-зонда.

Разработаны удобные модификации метода ASO с использованием

аллель-специфических ДНК-зондов, меченых биотином или пе-

роксидазой хрена (Лебедева и др.,1994).

Наиболее быстрым, экономичным и удобным методом скани-

рования точечных мутаций является модифицированный вариант

ASO, так называемая гибридизационная система обратного

дот-блота (reverse dot-blot hybridisation system) (Saiki

et.al.,1989). Метод позволяет одновременно скринировать сра-

зу много точечных мутаций и доступен автоматизации

(Chebab, 1993). В этом случае проводят гибридизацию меченых

продуктов ПЦР, обычно представляющих собой отдельные экзоны,

с фиксированными на нейлоновых фильтрах аллель-специфически-

ми олигонуклеотидными зондами (ASO). Предварительную иммоби-

лизацию мутантных и нормальных ASO-зондов на мембранах осу-

ществляют за счет присоединения гомополимерных T-хвостов с

дезоксирибонуклеотид-трансферазой на конце. При этом олиго-

нуклеотидные последовательности остаются свободными и могут

участвовать в гибридизации с мечеными амплифицированными

фрагментами ДНК. После отмывки несвязавшихся молекул ДНК ра-

диоавтографические или цветные пятна на фильтрах становятся

заметными только в местах локализации олигонуклеотидов, пол-

ностью комплементарных тестируемой геномной ДНК. Реакцию,

обычно проводят в присутствии ионов тетра-алкиламмония,

уменьшающих зависимость температуры плавления от композиции

оснований. Это позволяет использовать одинаковые условия

гибридизации для различных олигонуклеотидов, то есть вести

поиск сразу нескольких типов мутаций, локализованных в одном

и том же экзоне гена. Данный метод положен в основу разра-

ботки специальных систем, предназначенных для одновременной

детекции наиболее распространенных мутаций в исследуемом ге-

не. Система представляет собой ленточный фильтр (стрип) с

нанесенными пятнами олигопраймеров, каждый из которых соот-

ветствует определенной мутации. Стрип помещают в раствор со

смесью тех меченых амплифицированных экзонов, которые могут

содержать тестируемые мутантные аллели и создают условия для

аллель-специфифческой гибридизации. Таким способом сканируют

одновренно 42 мутации, ответственные за серповидноклеточную

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35


ИНТЕРЕСНОЕ



© 2009 Все права защищены.